| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2015 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: sameeragarwal@google.com (Sameer Agarwal)//// Simple blas functions for use in the Schur Eliminator. These are// fairly basic implementations which already yield a significant// speedup in the eliminator performance.#ifndef CERES_INTERNAL_SMALL_BLAS_H_#define CERES_INTERNAL_SMALL_BLAS_H_#include "ceres/internal/eigen.h"#include "ceres/internal/port.h"#include "glog/logging.h"#include "small_blas_generic.h"namespace ceres {namespace internal {// The following three macros are used to share code and reduce// template junk across the various GEMM variants.#define CERES_GEMM_BEGIN(name)                                          \  template <int kRowA, int kColA, int kRowB, int kColB, int kOperation> \  inline void name(const double* A,                                     \                   const int num_row_a,                                 \                   const int num_col_a,                                 \                   const double* B,                                     \                   const int num_row_b,                                 \                   const int num_col_b,                                 \                   double* C,                                           \                   const int start_row_c,                               \                   const int start_col_c,                               \                   const int row_stride_c,                              \                   const int col_stride_c)#define CERES_GEMM_NAIVE_HEADER                                        \  DCHECK_GT(num_row_a, 0);                                             \  DCHECK_GT(num_col_a, 0);                                             \  DCHECK_GT(num_row_b, 0);                                             \  DCHECK_GT(num_col_b, 0);                                             \  DCHECK_GE(start_row_c, 0);                                           \  DCHECK_GE(start_col_c, 0);                                           \  DCHECK_GT(row_stride_c, 0);                                          \  DCHECK_GT(col_stride_c, 0);                                          \  DCHECK((kRowA == Eigen::Dynamic) || (kRowA == num_row_a));           \  DCHECK((kColA == Eigen::Dynamic) || (kColA == num_col_a));           \  DCHECK((kRowB == Eigen::Dynamic) || (kRowB == num_row_b));           \  DCHECK((kColB == Eigen::Dynamic) || (kColB == num_col_b));           \  const int NUM_ROW_A = (kRowA != Eigen::Dynamic ? kRowA : num_row_a); \  const int NUM_COL_A = (kColA != Eigen::Dynamic ? kColA : num_col_a); \  const int NUM_ROW_B = (kRowB != Eigen::Dynamic ? kRowB : num_row_b); \  const int NUM_COL_B = (kColB != Eigen::Dynamic ? kColB : num_col_b);#define CERES_GEMM_EIGEN_HEADER                                 \  const typename EigenTypes<kRowA, kColA>::ConstMatrixRef Aref( \      A, num_row_a, num_col_a);                                 \  const typename EigenTypes<kRowB, kColB>::ConstMatrixRef Bref( \      B, num_row_b, num_col_b);                                 \  MatrixRef Cref(C, row_stride_c, col_stride_c);// clang-format off#define CERES_CALL_GEMM(name)                                           \  name<kRowA, kColA, kRowB, kColB, kOperation>(                         \      A, num_row_a, num_col_a,                                          \      B, num_row_b, num_col_b,                                          \      C, start_row_c, start_col_c, row_stride_c, col_stride_c);// clang-format on#define CERES_GEMM_STORE_SINGLE(p, index, value) \  if (kOperation > 0) {                          \    p[index] += value;                           \  } else if (kOperation < 0) {                   \    p[index] -= value;                           \  } else {                                       \    p[index] = value;                            \  }#define CERES_GEMM_STORE_PAIR(p, index, v1, v2) \  if (kOperation > 0) {                         \    p[index] += v1;                             \    p[index + 1] += v2;                         \  } else if (kOperation < 0) {                  \    p[index] -= v1;                             \    p[index + 1] -= v2;                         \  } else {                                      \    p[index] = v1;                              \    p[index + 1] = v2;                          \  }// For the matrix-matrix functions below, there are three variants for// each functionality. Foo, FooNaive and FooEigen. Foo is the one to// be called by the user. FooNaive is a basic loop based// implementation and FooEigen uses Eigen's implementation. Foo// chooses between FooNaive and FooEigen depending on how many of the// template arguments are fixed at compile time. Currently, FooEigen// is called if all matrix dimensions are compile time// constants. FooNaive is called otherwise. This leads to the best// performance currently.//// The MatrixMatrixMultiply variants compute:////   C op A * B;//// The MatrixTransposeMatrixMultiply variants compute:////   C op A' * B//// where op can be +=, -=, or =.//// The template parameters (kRowA, kColA, kRowB, kColB) allow// specialization of the loop at compile time. If this information is// not available, then Eigen::Dynamic should be used as the template// argument.////   kOperation =  1  -> C += A * B//   kOperation = -1  -> C -= A * B//   kOperation =  0  -> C  = A * B//// The functions can write into matrices C which are larger than the// matrix A * B. This is done by specifying the true size of C via// row_stride_c and col_stride_c, and then indicating where A * B// should be written into by start_row_c and start_col_c.//// Graphically if row_stride_c = 10, col_stride_c = 12, start_row_c =// 4 and start_col_c = 5, then if A = 3x2 and B = 2x4, we get////   ------------//   ------------//   ------------//   ------------//   -----xxxx---//   -----xxxx---//   -----xxxx---//   ------------//   ------------//   ------------//CERES_GEMM_BEGIN(MatrixMatrixMultiplyEigen) {  CERES_GEMM_EIGEN_HEADER  Eigen::Block<MatrixRef, kRowA, kColB> block(      Cref, start_row_c, start_col_c, num_row_a, num_col_b);  if (kOperation > 0) {    block.noalias() += Aref * Bref;  } else if (kOperation < 0) {    block.noalias() -= Aref * Bref;  } else {    block.noalias() = Aref * Bref;  }}CERES_GEMM_BEGIN(MatrixMatrixMultiplyNaive) {  CERES_GEMM_NAIVE_HEADER  DCHECK_EQ(NUM_COL_A, NUM_ROW_B);  const int NUM_ROW_C = NUM_ROW_A;  const int NUM_COL_C = NUM_COL_B;  DCHECK_LE(start_row_c + NUM_ROW_C, row_stride_c);  DCHECK_LE(start_col_c + NUM_COL_C, col_stride_c);  const int span = 4;  // Calculate the remainder part first.  // Process the last odd column if present.  if (NUM_COL_C & 1) {    int col = NUM_COL_C - 1;    const double* pa = &A[0];    for (int row = 0; row < NUM_ROW_C; ++row, pa += NUM_COL_A) {      const double* pb = &B[col];      double tmp = 0.0;      for (int k = 0; k < NUM_COL_A; ++k, pb += NUM_COL_B) {        tmp += pa[k] * pb[0];      }      const int index = (row + start_row_c) * col_stride_c + start_col_c + col;      CERES_GEMM_STORE_SINGLE(C, index, tmp);    }    // Return directly for efficiency of extremely small matrix multiply.    if (NUM_COL_C == 1) {      return;    }  }  // Process the couple columns in remainder if present.  if (NUM_COL_C & 2) {    int col = NUM_COL_C & (int)(~(span - 1));    const double* pa = &A[0];    for (int row = 0; row < NUM_ROW_C; ++row, pa += NUM_COL_A) {      const double* pb = &B[col];      double tmp1 = 0.0, tmp2 = 0.0;      for (int k = 0; k < NUM_COL_A; ++k, pb += NUM_COL_B) {        double av = pa[k];        tmp1 += av * pb[0];        tmp2 += av * pb[1];      }      const int index = (row + start_row_c) * col_stride_c + start_col_c + col;      CERES_GEMM_STORE_PAIR(C, index, tmp1, tmp2);    }    // Return directly for efficiency of extremely small matrix multiply.    if (NUM_COL_C < span) {      return;    }  }  // Calculate the main part with multiples of 4.  int col_m = NUM_COL_C & (int)(~(span - 1));  for (int col = 0; col < col_m; col += span) {    for (int row = 0; row < NUM_ROW_C; ++row) {      const int index = (row + start_row_c) * col_stride_c + start_col_c + col;      // clang-format off      MMM_mat1x4(NUM_COL_A, &A[row * NUM_COL_A],                 &B[col], NUM_COL_B, &C[index], kOperation);      // clang-format on    }  }}CERES_GEMM_BEGIN(MatrixMatrixMultiply) {#ifdef CERES_NO_CUSTOM_BLAS  CERES_CALL_GEMM(MatrixMatrixMultiplyEigen)  return;#else  if (kRowA != Eigen::Dynamic && kColA != Eigen::Dynamic &&      kRowB != Eigen::Dynamic && kColB != Eigen::Dynamic) {    CERES_CALL_GEMM(MatrixMatrixMultiplyEigen)  } else {    CERES_CALL_GEMM(MatrixMatrixMultiplyNaive)  }#endif}CERES_GEMM_BEGIN(MatrixTransposeMatrixMultiplyEigen) {  CERES_GEMM_EIGEN_HEADER  // clang-format off  Eigen::Block<MatrixRef, kColA, kColB> block(Cref,                                              start_row_c, start_col_c,                                              num_col_a, num_col_b);  // clang-format on  if (kOperation > 0) {    block.noalias() += Aref.transpose() * Bref;  } else if (kOperation < 0) {    block.noalias() -= Aref.transpose() * Bref;  } else {    block.noalias() = Aref.transpose() * Bref;  }}CERES_GEMM_BEGIN(MatrixTransposeMatrixMultiplyNaive) {  CERES_GEMM_NAIVE_HEADER  DCHECK_EQ(NUM_ROW_A, NUM_ROW_B);  const int NUM_ROW_C = NUM_COL_A;  const int NUM_COL_C = NUM_COL_B;  DCHECK_LE(start_row_c + NUM_ROW_C, row_stride_c);  DCHECK_LE(start_col_c + NUM_COL_C, col_stride_c);  const int span = 4;  // Process the remainder part first.  // Process the last odd column if present.  if (NUM_COL_C & 1) {    int col = NUM_COL_C - 1;    for (int row = 0; row < NUM_ROW_C; ++row) {      const double* pa = &A[row];      const double* pb = &B[col];      double tmp = 0.0;      for (int k = 0; k < NUM_ROW_A; ++k) {        tmp += pa[0] * pb[0];        pa += NUM_COL_A;        pb += NUM_COL_B;      }      const int index = (row + start_row_c) * col_stride_c + start_col_c + col;      CERES_GEMM_STORE_SINGLE(C, index, tmp);    }    // Return directly for efficiency of extremely small matrix multiply.    if (NUM_COL_C == 1) {      return;    }  }  // Process the couple columns in remainder if present.  if (NUM_COL_C & 2) {    int col = NUM_COL_C & (int)(~(span - 1));    for (int row = 0; row < NUM_ROW_C; ++row) {      const double* pa = &A[row];      const double* pb = &B[col];      double tmp1 = 0.0, tmp2 = 0.0;      for (int k = 0; k < NUM_ROW_A; ++k) {        double av = *pa;        tmp1 += av * pb[0];        tmp2 += av * pb[1];        pa += NUM_COL_A;        pb += NUM_COL_B;      }      const int index = (row + start_row_c) * col_stride_c + start_col_c + col;      CERES_GEMM_STORE_PAIR(C, index, tmp1, tmp2);    }    // Return directly for efficiency of extremely small matrix multiply.    if (NUM_COL_C < span) {      return;    }  }  // Process the main part with multiples of 4.  int col_m = NUM_COL_C & (int)(~(span - 1));  for (int col = 0; col < col_m; col += span) {    for (int row = 0; row < NUM_ROW_C; ++row) {      const int index = (row + start_row_c) * col_stride_c + start_col_c + col;      // clang-format off      MTM_mat1x4(NUM_ROW_A, &A[row], NUM_COL_A,                 &B[col], NUM_COL_B, &C[index], kOperation);      // clang-format on    }  }}CERES_GEMM_BEGIN(MatrixTransposeMatrixMultiply) {#ifdef CERES_NO_CUSTOM_BLAS  CERES_CALL_GEMM(MatrixTransposeMatrixMultiplyEigen)  return;#else  if (kRowA != Eigen::Dynamic && kColA != Eigen::Dynamic &&      kRowB != Eigen::Dynamic && kColB != Eigen::Dynamic) {    CERES_CALL_GEMM(MatrixTransposeMatrixMultiplyEigen)  } else {    CERES_CALL_GEMM(MatrixTransposeMatrixMultiplyNaive)  }#endif}// Matrix-Vector multiplication//// c op A * b;//// where op can be +=, -=, or =.//// The template parameters (kRowA, kColA) allow specialization of the// loop at compile time. If this information is not available, then// Eigen::Dynamic should be used as the template argument.//// kOperation =  1  -> c += A' * b// kOperation = -1  -> c -= A' * b// kOperation =  0  -> c  = A' * btemplate <int kRowA, int kColA, int kOperation>inline void MatrixVectorMultiply(const double* A,                                 const int num_row_a,                                 const int num_col_a,                                 const double* b,                                 double* c) {#ifdef CERES_NO_CUSTOM_BLAS  const typename EigenTypes<kRowA, kColA>::ConstMatrixRef Aref(      A, num_row_a, num_col_a);  const typename EigenTypes<kColA>::ConstVectorRef bref(b, num_col_a);  typename EigenTypes<kRowA>::VectorRef cref(c, num_row_a);  // lazyProduct works better than .noalias() for matrix-vector  // products.  if (kOperation > 0) {    cref += Aref.lazyProduct(bref);  } else if (kOperation < 0) {    cref -= Aref.lazyProduct(bref);  } else {    cref = Aref.lazyProduct(bref);  }#else  DCHECK_GT(num_row_a, 0);  DCHECK_GT(num_col_a, 0);  DCHECK((kRowA == Eigen::Dynamic) || (kRowA == num_row_a));  DCHECK((kColA == Eigen::Dynamic) || (kColA == num_col_a));  const int NUM_ROW_A = (kRowA != Eigen::Dynamic ? kRowA : num_row_a);  const int NUM_COL_A = (kColA != Eigen::Dynamic ? kColA : num_col_a);  const int span = 4;  // Calculate the remainder part first.  // Process the last odd row if present.  if (NUM_ROW_A & 1) {    int row = NUM_ROW_A - 1;    const double* pa = &A[row * NUM_COL_A];    const double* pb = &b[0];    double tmp = 0.0;    for (int col = 0; col < NUM_COL_A; ++col) {      tmp += (*pa++) * (*pb++);    }    CERES_GEMM_STORE_SINGLE(c, row, tmp);    // Return directly for efficiency of extremely small matrix multiply.    if (NUM_ROW_A == 1) {      return;    }  }  // Process the couple rows in remainder if present.  if (NUM_ROW_A & 2) {    int row = NUM_ROW_A & (int)(~(span - 1));    const double* pa1 = &A[row * NUM_COL_A];    const double* pa2 = pa1 + NUM_COL_A;    const double* pb = &b[0];    double tmp1 = 0.0, tmp2 = 0.0;    for (int col = 0; col < NUM_COL_A; ++col) {      double bv = *pb++;      tmp1 += *(pa1++) * bv;      tmp2 += *(pa2++) * bv;    }    CERES_GEMM_STORE_PAIR(c, row, tmp1, tmp2);    // Return directly for efficiency of extremely small matrix multiply.    if (NUM_ROW_A < span) {      return;    }  }  // Calculate the main part with multiples of 4.  int row_m = NUM_ROW_A & (int)(~(span - 1));  for (int row = 0; row < row_m; row += span) {    // clang-format off    MVM_mat4x1(NUM_COL_A, &A[row * NUM_COL_A], NUM_COL_A,               &b[0], &c[row], kOperation);    // clang-format on  }#endif  // CERES_NO_CUSTOM_BLAS}// Similar to MatrixVectorMultiply, except that A is transposed, i.e.,//// c op A' * b;template <int kRowA, int kColA, int kOperation>inline void MatrixTransposeVectorMultiply(const double* A,                                          const int num_row_a,                                          const int num_col_a,                                          const double* b,                                          double* c) {#ifdef CERES_NO_CUSTOM_BLAS  const typename EigenTypes<kRowA, kColA>::ConstMatrixRef Aref(      A, num_row_a, num_col_a);  const typename EigenTypes<kRowA>::ConstVectorRef bref(b, num_row_a);  typename EigenTypes<kColA>::VectorRef cref(c, num_col_a);  // lazyProduct works better than .noalias() for matrix-vector  // products.  if (kOperation > 0) {    cref += Aref.transpose().lazyProduct(bref);  } else if (kOperation < 0) {    cref -= Aref.transpose().lazyProduct(bref);  } else {    cref = Aref.transpose().lazyProduct(bref);  }#else  DCHECK_GT(num_row_a, 0);  DCHECK_GT(num_col_a, 0);  DCHECK((kRowA == Eigen::Dynamic) || (kRowA == num_row_a));  DCHECK((kColA == Eigen::Dynamic) || (kColA == num_col_a));  const int NUM_ROW_A = (kRowA != Eigen::Dynamic ? kRowA : num_row_a);  const int NUM_COL_A = (kColA != Eigen::Dynamic ? kColA : num_col_a);  const int span = 4;  // Calculate the remainder part first.  // Process the last odd column if present.  if (NUM_COL_A & 1) {    int row = NUM_COL_A - 1;    const double* pa = &A[row];    const double* pb = &b[0];    double tmp = 0.0;    for (int col = 0; col < NUM_ROW_A; ++col) {      tmp += *pa * (*pb++);      pa += NUM_COL_A;    }    CERES_GEMM_STORE_SINGLE(c, row, tmp);    // Return directly for efficiency of extremely small matrix multiply.    if (NUM_COL_A == 1) {      return;    }  }  // Process the couple columns in remainder if present.  if (NUM_COL_A & 2) {    int row = NUM_COL_A & (int)(~(span - 1));    const double* pa = &A[row];    const double* pb = &b[0];    double tmp1 = 0.0, tmp2 = 0.0;    for (int col = 0; col < NUM_ROW_A; ++col) {      // clang-format off      double bv = *pb++;      tmp1 += *(pa    ) * bv;      tmp2 += *(pa + 1) * bv;      pa += NUM_COL_A;      // clang-format on    }    CERES_GEMM_STORE_PAIR(c, row, tmp1, tmp2);    // Return directly for efficiency of extremely small matrix multiply.    if (NUM_COL_A < span) {      return;    }  }  // Calculate the main part with multiples of 4.  int row_m = NUM_COL_A & (int)(~(span - 1));  for (int row = 0; row < row_m; row += span) {    // clang-format off    MTV_mat4x1(NUM_ROW_A, &A[row], NUM_COL_A,               &b[0], &c[row], kOperation);    // clang-format on  }#endif  // CERES_NO_CUSTOM_BLAS}#undef CERES_GEMM_BEGIN#undef CERES_GEMM_EIGEN_HEADER#undef CERES_GEMM_NAIVE_HEADER#undef CERES_CALL_GEMM#undef CERES_GEMM_STORE_SINGLE#undef CERES_GEMM_STORE_PAIR}  // namespace internal}  // namespace ceres#endif  // CERES_INTERNAL_SMALL_BLAS_H_
 |