| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721 | 
							- // Ceres Solver - A fast non-linear least squares minimizer
 
- // Copyright 2015 Google Inc. All rights reserved.
 
- // http://ceres-solver.org/
 
- //
 
- // Redistribution and use in source and binary forms, with or without
 
- // modification, are permitted provided that the following conditions are met:
 
- //
 
- // * Redistributions of source code must retain the above copyright notice,
 
- //   this list of conditions and the following disclaimer.
 
- // * Redistributions in binary form must reproduce the above copyright notice,
 
- //   this list of conditions and the following disclaimer in the documentation
 
- //   and/or other materials provided with the distribution.
 
- // * Neither the name of Google Inc. nor the names of its contributors may be
 
- //   used to endorse or promote products derived from this software without
 
- //   specific prior written permission.
 
- //
 
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 
- // POSSIBILITY OF SUCH DAMAGE.
 
- //
 
- // Author: sameeragarwal@google.com (Sameer Agarwal)
 
- //
 
- // TODO(sameeragarwal): row_block_counter can perhaps be replaced by
 
- // Chunk::start ?
 
- #ifndef CERES_INTERNAL_SCHUR_ELIMINATOR_IMPL_H_
 
- #define CERES_INTERNAL_SCHUR_ELIMINATOR_IMPL_H_
 
- // Eigen has an internal threshold switching between different matrix
 
- // multiplication algorithms. In particular for matrices larger than
 
- // EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD it uses a cache friendly
 
- // matrix matrix product algorithm that has a higher setup cost. For
 
- // matrix sizes close to this threshold, especially when the matrices
 
- // are thin and long, the default choice may not be optimal. This is
 
- // the case for us, as the default choice causes a 30% performance
 
- // regression when we moved from Eigen2 to Eigen3.
 
- #define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 10
 
- // This include must come before any #ifndef check on Ceres compile options.
 
- // clang-format off
 
- #include "ceres/internal/port.h"
 
- // clang-format on
 
- #include <algorithm>
 
- #include <map>
 
- #include "Eigen/Dense"
 
- #include "ceres/block_random_access_matrix.h"
 
- #include "ceres/block_sparse_matrix.h"
 
- #include "ceres/block_structure.h"
 
- #include "ceres/internal/eigen.h"
 
- #include "ceres/internal/fixed_array.h"
 
- #include "ceres/invert_psd_matrix.h"
 
- #include "ceres/map_util.h"
 
- #include "ceres/parallel_for.h"
 
- #include "ceres/schur_eliminator.h"
 
- #include "ceres/scoped_thread_token.h"
 
- #include "ceres/small_blas.h"
 
- #include "ceres/stl_util.h"
 
- #include "ceres/thread_token_provider.h"
 
- #include "glog/logging.h"
 
- namespace ceres {
 
- namespace internal {
 
- template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
 
- SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::~SchurEliminator() {
 
-   STLDeleteElements(&rhs_locks_);
 
- }
 
- template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
 
- void SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::Init(
 
-     int num_eliminate_blocks,
 
-     bool assume_full_rank_ete,
 
-     const CompressedRowBlockStructure* bs) {
 
-   CHECK_GT(num_eliminate_blocks, 0)
 
-       << "SchurComplementSolver cannot be initialized with "
 
-       << "num_eliminate_blocks = 0.";
 
-   num_eliminate_blocks_ = num_eliminate_blocks;
 
-   assume_full_rank_ete_ = assume_full_rank_ete;
 
-   const int num_col_blocks = bs->cols.size();
 
-   const int num_row_blocks = bs->rows.size();
 
-   buffer_size_ = 1;
 
-   chunks_.clear();
 
-   lhs_row_layout_.clear();
 
-   int lhs_num_rows = 0;
 
-   // Add a map object for each block in the reduced linear system
 
-   // and build the row/column block structure of the reduced linear
 
-   // system.
 
-   lhs_row_layout_.resize(num_col_blocks - num_eliminate_blocks_);
 
-   for (int i = num_eliminate_blocks_; i < num_col_blocks; ++i) {
 
-     lhs_row_layout_[i - num_eliminate_blocks_] = lhs_num_rows;
 
-     lhs_num_rows += bs->cols[i].size;
 
-   }
 
-   // TODO(sameeragarwal): Now that we may have subset block structure,
 
-   // we need to make sure that we account for the fact that somep
 
-   // point blocks only have a "diagonal" row and nothing more.
 
-   //
 
-   // This likely requires a slightly different algorithm, which works
 
-   // off of the number of elimination blocks.
 
-   int r = 0;
 
-   // Iterate over the row blocks of A, and detect the chunks. The
 
-   // matrix should already have been ordered so that all rows
 
-   // containing the same y block are vertically contiguous. Along
 
-   // the way also compute the amount of space each chunk will need
 
-   // to perform the elimination.
 
-   while (r < num_row_blocks) {
 
-     const int chunk_block_id = bs->rows[r].cells.front().block_id;
 
-     if (chunk_block_id >= num_eliminate_blocks_) {
 
-       break;
 
-     }
 
-     chunks_.push_back(Chunk(r));
 
-     Chunk& chunk = chunks_.back();
 
-     int buffer_size = 0;
 
-     const int e_block_size = bs->cols[chunk_block_id].size;
 
-     // Add to the chunk until the first block in the row is
 
-     // different than the one in the first row for the chunk.
 
-     while (r + chunk.size < num_row_blocks) {
 
-       const CompressedRow& row = bs->rows[r + chunk.size];
 
-       if (row.cells.front().block_id != chunk_block_id) {
 
-         break;
 
-       }
 
-       // Iterate over the blocks in the row, ignoring the first
 
-       // block since it is the one to be eliminated.
 
-       for (int c = 1; c < row.cells.size(); ++c) {
 
-         const Cell& cell = row.cells[c];
 
-         if (InsertIfNotPresent(
 
-                 &(chunk.buffer_layout), cell.block_id, buffer_size)) {
 
-           buffer_size += e_block_size * bs->cols[cell.block_id].size;
 
-         }
 
-       }
 
-       buffer_size_ = std::max(buffer_size, buffer_size_);
 
-       ++chunk.size;
 
-     }
 
-     CHECK_GT(chunk.size, 0);  // This check will need to be resolved.
 
-     r += chunk.size;
 
-   }
 
-   const Chunk& chunk = chunks_.back();
 
-   uneliminated_row_begins_ = chunk.start + chunk.size;
 
-   buffer_.reset(new double[buffer_size_ * num_threads_]);
 
-   // chunk_outer_product_buffer_ only needs to store e_block_size *
 
-   // f_block_size, which is always less than buffer_size_, so we just
 
-   // allocate buffer_size_ per thread.
 
-   chunk_outer_product_buffer_.reset(new double[buffer_size_ * num_threads_]);
 
-   STLDeleteElements(&rhs_locks_);
 
-   rhs_locks_.resize(num_col_blocks - num_eliminate_blocks_);
 
-   for (int i = 0; i < num_col_blocks - num_eliminate_blocks_; ++i) {
 
-     rhs_locks_[i] = new std::mutex;
 
-   }
 
- }
 
- template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
 
- void SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::Eliminate(
 
-     const BlockSparseMatrixData& A,
 
-     const double* b,
 
-     const double* D,
 
-     BlockRandomAccessMatrix* lhs,
 
-     double* rhs) {
 
-   if (lhs->num_rows() > 0) {
 
-     lhs->SetZero();
 
-     if (rhs) {
 
-       VectorRef(rhs, lhs->num_rows()).setZero();
 
-     }
 
-   }
 
-   const CompressedRowBlockStructure* bs = A.block_structure();
 
-   const int num_col_blocks = bs->cols.size();
 
-   // Add the diagonal to the schur complement.
 
-   if (D != NULL) {
 
-     ParallelFor(context_,
 
-                 num_eliminate_blocks_,
 
-                 num_col_blocks,
 
-                 num_threads_,
 
-                 [&](int i) {
 
-                   const int block_id = i - num_eliminate_blocks_;
 
-                   int r, c, row_stride, col_stride;
 
-                   CellInfo* cell_info = lhs->GetCell(
 
-                       block_id, block_id, &r, &c, &row_stride, &col_stride);
 
-                   if (cell_info != NULL) {
 
-                     const int block_size = bs->cols[i].size;
 
-                     typename EigenTypes<Eigen::Dynamic>::ConstVectorRef diag(
 
-                         D + bs->cols[i].position, block_size);
 
-                     std::lock_guard<std::mutex> l(cell_info->m);
 
-                     MatrixRef m(cell_info->values, row_stride, col_stride);
 
-                     m.block(r, c, block_size, block_size).diagonal() +=
 
-                         diag.array().square().matrix();
 
-                   }
 
-                 });
 
-   }
 
-   // Eliminate y blocks one chunk at a time.  For each chunk, compute
 
-   // the entries of the normal equations and the gradient vector block
 
-   // corresponding to the y block and then apply Gaussian elimination
 
-   // to them. The matrix ete stores the normal matrix corresponding to
 
-   // the block being eliminated and array buffer_ contains the
 
-   // non-zero blocks in the row corresponding to this y block in the
 
-   // normal equations. This computation is done in
 
-   // ChunkDiagonalBlockAndGradient. UpdateRhs then applies gaussian
 
-   // elimination to the rhs of the normal equations, updating the rhs
 
-   // of the reduced linear system by modifying rhs blocks for all the
 
-   // z blocks that share a row block/residual term with the y
 
-   // block. EliminateRowOuterProduct does the corresponding operation
 
-   // for the lhs of the reduced linear system.
 
-   ParallelFor(
 
-       context_,
 
-       0,
 
-       int(chunks_.size()),
 
-       num_threads_,
 
-       [&](int thread_id, int i) {
 
-         double* buffer = buffer_.get() + thread_id * buffer_size_;
 
-         const Chunk& chunk = chunks_[i];
 
-         const int e_block_id = bs->rows[chunk.start].cells.front().block_id;
 
-         const int e_block_size = bs->cols[e_block_id].size;
 
-         VectorRef(buffer, buffer_size_).setZero();
 
-         typename EigenTypes<kEBlockSize, kEBlockSize>::Matrix ete(e_block_size,
 
-                                                                   e_block_size);
 
-         if (D != NULL) {
 
-           const typename EigenTypes<kEBlockSize>::ConstVectorRef diag(
 
-               D + bs->cols[e_block_id].position, e_block_size);
 
-           ete = diag.array().square().matrix().asDiagonal();
 
-         } else {
 
-           ete.setZero();
 
-         }
 
-         FixedArray<double, 8> g(e_block_size);
 
-         typename EigenTypes<kEBlockSize>::VectorRef gref(g.data(),
 
-                                                          e_block_size);
 
-         gref.setZero();
 
-         // We are going to be computing
 
-         //
 
-         //   S += F'F - F'E(E'E)^{-1}E'F
 
-         //
 
-         // for each Chunk. The computation is broken down into a number of
 
-         // function calls as below.
 
-         // Compute the outer product of the e_blocks with themselves (ete
 
-         // = E'E). Compute the product of the e_blocks with the
 
-         // corresponding f_blocks (buffer = E'F), the gradient of the terms
 
-         // in this chunk (g) and add the outer product of the f_blocks to
 
-         // Schur complement (S += F'F).
 
-         ChunkDiagonalBlockAndGradient(
 
-             chunk, A, b, chunk.start, &ete, g.data(), buffer, lhs);
 
-         // Normally one wouldn't compute the inverse explicitly, but
 
-         // e_block_size will typically be a small number like 3, in
 
-         // which case its much faster to compute the inverse once and
 
-         // use it to multiply other matrices/vectors instead of doing a
 
-         // Solve call over and over again.
 
-         typename EigenTypes<kEBlockSize, kEBlockSize>::Matrix inverse_ete =
 
-             InvertPSDMatrix<kEBlockSize>(assume_full_rank_ete_, ete);
 
-         // For the current chunk compute and update the rhs of the reduced
 
-         // linear system.
 
-         //
 
-         //   rhs = F'b - F'E(E'E)^(-1) E'b
 
-         if (rhs) {
 
-           FixedArray<double, 8> inverse_ete_g(e_block_size);
 
-           MatrixVectorMultiply<kEBlockSize, kEBlockSize, 0>(
 
-               inverse_ete.data(),
 
-               e_block_size,
 
-               e_block_size,
 
-               g.data(),
 
-               inverse_ete_g.data());
 
-           UpdateRhs(chunk, A, b, chunk.start, inverse_ete_g.data(), rhs);
 
-         }
 
-         // S -= F'E(E'E)^{-1}E'F
 
-         ChunkOuterProduct(
 
-             thread_id, bs, inverse_ete, buffer, chunk.buffer_layout, lhs);
 
-       });
 
-   // For rows with no e_blocks, the schur complement update reduces to
 
-   // S += F'F.
 
-   NoEBlockRowsUpdate(A, b, uneliminated_row_begins_, lhs, rhs);
 
- }
 
- template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
 
- void SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::BackSubstitute(
 
-     const BlockSparseMatrixData& A,
 
-     const double* b,
 
-     const double* D,
 
-     const double* z,
 
-     double* y) {
 
-   const CompressedRowBlockStructure* bs = A.block_structure();
 
-   const double* values = A.values();
 
-   ParallelFor(context_, 0, int(chunks_.size()), num_threads_, [&](int i) {
 
-     const Chunk& chunk = chunks_[i];
 
-     const int e_block_id = bs->rows[chunk.start].cells.front().block_id;
 
-     const int e_block_size = bs->cols[e_block_id].size;
 
-     double* y_ptr = y + bs->cols[e_block_id].position;
 
-     typename EigenTypes<kEBlockSize>::VectorRef y_block(y_ptr, e_block_size);
 
-     typename EigenTypes<kEBlockSize, kEBlockSize>::Matrix ete(e_block_size,
 
-                                                               e_block_size);
 
-     if (D != NULL) {
 
-       const typename EigenTypes<kEBlockSize>::ConstVectorRef diag(
 
-           D + bs->cols[e_block_id].position, e_block_size);
 
-       ete = diag.array().square().matrix().asDiagonal();
 
-     } else {
 
-       ete.setZero();
 
-     }
 
-     for (int j = 0; j < chunk.size; ++j) {
 
-       const CompressedRow& row = bs->rows[chunk.start + j];
 
-       const Cell& e_cell = row.cells.front();
 
-       DCHECK_EQ(e_block_id, e_cell.block_id);
 
-       FixedArray<double, 8> sj(row.block.size);
 
-       typename EigenTypes<kRowBlockSize>::VectorRef(sj.data(), row.block.size) =
 
-           typename EigenTypes<kRowBlockSize>::ConstVectorRef(
 
-               b + bs->rows[chunk.start + j].block.position, row.block.size);
 
-       for (int c = 1; c < row.cells.size(); ++c) {
 
-         const int f_block_id = row.cells[c].block_id;
 
-         const int f_block_size = bs->cols[f_block_id].size;
 
-         const int r_block = f_block_id - num_eliminate_blocks_;
 
-         // clang-format off
 
-         MatrixVectorMultiply<kRowBlockSize, kFBlockSize, -1>(
 
-             values + row.cells[c].position, row.block.size, f_block_size,
 
-             z + lhs_row_layout_[r_block],
 
-             sj.data());
 
-       }
 
-       MatrixTransposeVectorMultiply<kRowBlockSize, kEBlockSize, 1>(
 
-           values + e_cell.position, row.block.size, e_block_size,
 
-           sj.data(),
 
-           y_ptr);
 
-       MatrixTransposeMatrixMultiply
 
-           <kRowBlockSize, kEBlockSize, kRowBlockSize, kEBlockSize, 1>(
 
-           values + e_cell.position, row.block.size, e_block_size,
 
-           values + e_cell.position, row.block.size, e_block_size,
 
-           ete.data(), 0, 0, e_block_size, e_block_size);
 
-       // clang-format on
 
-     }
 
-     y_block =
 
-         InvertPSDMatrix<kEBlockSize>(assume_full_rank_ete_, ete) * y_block;
 
-   });
 
- }
 
- // Update the rhs of the reduced linear system. Compute
 
- //
 
- //   F'b - F'E(E'E)^(-1) E'b
 
- template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
 
- void SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::UpdateRhs(
 
-     const Chunk& chunk,
 
-     const BlockSparseMatrixData& A,
 
-     const double* b,
 
-     int row_block_counter,
 
-     const double* inverse_ete_g,
 
-     double* rhs) {
 
-   const CompressedRowBlockStructure* bs = A.block_structure();
 
-   const double* values = A.values();
 
-   const int e_block_id = bs->rows[chunk.start].cells.front().block_id;
 
-   const int e_block_size = bs->cols[e_block_id].size;
 
-   int b_pos = bs->rows[row_block_counter].block.position;
 
-   for (int j = 0; j < chunk.size; ++j) {
 
-     const CompressedRow& row = bs->rows[row_block_counter + j];
 
-     const Cell& e_cell = row.cells.front();
 
-     typename EigenTypes<kRowBlockSize>::Vector sj =
 
-         typename EigenTypes<kRowBlockSize>::ConstVectorRef(b + b_pos,
 
-                                                            row.block.size);
 
-     // clang-format off
 
-     MatrixVectorMultiply<kRowBlockSize, kEBlockSize, -1>(
 
-         values + e_cell.position, row.block.size, e_block_size,
 
-         inverse_ete_g, sj.data());
 
-     // clang-format on
 
-     for (int c = 1; c < row.cells.size(); ++c) {
 
-       const int block_id = row.cells[c].block_id;
 
-       const int block_size = bs->cols[block_id].size;
 
-       const int block = block_id - num_eliminate_blocks_;
 
-       std::lock_guard<std::mutex> l(*rhs_locks_[block]);
 
-       // clang-format off
 
-       MatrixTransposeVectorMultiply<kRowBlockSize, kFBlockSize, 1>(
 
-           values + row.cells[c].position,
 
-           row.block.size, block_size,
 
-           sj.data(), rhs + lhs_row_layout_[block]);
 
-       // clang-format on
 
-     }
 
-     b_pos += row.block.size;
 
-   }
 
- }
 
- // Given a Chunk - set of rows with the same e_block, e.g. in the
 
- // following Chunk with two rows.
 
- //
 
- //                E                   F
 
- //      [ y11   0   0   0 |  z11     0    0   0    z51]
 
- //      [ y12   0   0   0 |  z12   z22    0   0      0]
 
- //
 
- // this function computes twp matrices. The diagonal block matrix
 
- //
 
- //   ete = y11 * y11' + y12 * y12'
 
- //
 
- // and the off diagonal blocks in the Guass Newton Hessian.
 
- //
 
- //   buffer = [y11'(z11 + z12), y12' * z22, y11' * z51]
 
- //
 
- // which are zero compressed versions of the block sparse matrices E'E
 
- // and E'F.
 
- //
 
- // and the gradient of the e_block, E'b.
 
- template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
 
- void SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::
 
-     ChunkDiagonalBlockAndGradient(
 
-         const Chunk& chunk,
 
-         const BlockSparseMatrixData& A,
 
-         const double* b,
 
-         int row_block_counter,
 
-         typename EigenTypes<kEBlockSize, kEBlockSize>::Matrix* ete,
 
-         double* g,
 
-         double* buffer,
 
-         BlockRandomAccessMatrix* lhs) {
 
-   const CompressedRowBlockStructure* bs = A.block_structure();
 
-   const double* values = A.values();
 
-   int b_pos = bs->rows[row_block_counter].block.position;
 
-   const int e_block_size = ete->rows();
 
-   // Iterate over the rows in this chunk, for each row, compute the
 
-   // contribution of its F blocks to the Schur complement, the
 
-   // contribution of its E block to the matrix EE' (ete), and the
 
-   // corresponding block in the gradient vector.
 
-   for (int j = 0; j < chunk.size; ++j) {
 
-     const CompressedRow& row = bs->rows[row_block_counter + j];
 
-     if (row.cells.size() > 1) {
 
-       EBlockRowOuterProduct(A, row_block_counter + j, lhs);
 
-     }
 
-     // Extract the e_block, ETE += E_i' E_i
 
-     const Cell& e_cell = row.cells.front();
 
-     // clang-format off
 
-     MatrixTransposeMatrixMultiply
 
-         <kRowBlockSize, kEBlockSize, kRowBlockSize, kEBlockSize, 1>(
 
-             values + e_cell.position, row.block.size, e_block_size,
 
-             values + e_cell.position, row.block.size, e_block_size,
 
-             ete->data(), 0, 0, e_block_size, e_block_size);
 
-     // clang-format on
 
-     if (b) {
 
-       // g += E_i' b_i
 
-       // clang-format off
 
-       MatrixTransposeVectorMultiply<kRowBlockSize, kEBlockSize, 1>(
 
-           values + e_cell.position, row.block.size, e_block_size,
 
-           b + b_pos,
 
-           g);
 
-       // clang-format on
 
-     }
 
-     // buffer = E'F. This computation is done by iterating over the
 
-     // f_blocks for each row in the chunk.
 
-     for (int c = 1; c < row.cells.size(); ++c) {
 
-       const int f_block_id = row.cells[c].block_id;
 
-       const int f_block_size = bs->cols[f_block_id].size;
 
-       double* buffer_ptr = buffer + FindOrDie(chunk.buffer_layout, f_block_id);
 
-       // clang-format off
 
-       MatrixTransposeMatrixMultiply
 
-           <kRowBlockSize, kEBlockSize, kRowBlockSize, kFBlockSize, 1>(
 
-           values + e_cell.position, row.block.size, e_block_size,
 
-           values + row.cells[c].position, row.block.size, f_block_size,
 
-           buffer_ptr, 0, 0, e_block_size, f_block_size);
 
-       // clang-format on
 
-     }
 
-     b_pos += row.block.size;
 
-   }
 
- }
 
- // Compute the outer product F'E(E'E)^{-1}E'F and subtract it from the
 
- // Schur complement matrix, i.e
 
- //
 
- //  S -= F'E(E'E)^{-1}E'F.
 
- template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
 
- void SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::
 
-     ChunkOuterProduct(int thread_id,
 
-                       const CompressedRowBlockStructure* bs,
 
-                       const Matrix& inverse_ete,
 
-                       const double* buffer,
 
-                       const BufferLayoutType& buffer_layout,
 
-                       BlockRandomAccessMatrix* lhs) {
 
-   // This is the most computationally expensive part of this
 
-   // code. Profiling experiments reveal that the bottleneck is not the
 
-   // computation of the right-hand matrix product, but memory
 
-   // references to the left hand side.
 
-   const int e_block_size = inverse_ete.rows();
 
-   BufferLayoutType::const_iterator it1 = buffer_layout.begin();
 
-   double* b1_transpose_inverse_ete =
 
-       chunk_outer_product_buffer_.get() + thread_id * buffer_size_;
 
-   // S(i,j) -= bi' * ete^{-1} b_j
 
-   for (; it1 != buffer_layout.end(); ++it1) {
 
-     const int block1 = it1->first - num_eliminate_blocks_;
 
-     const int block1_size = bs->cols[it1->first].size;
 
-     // clang-format off
 
-     MatrixTransposeMatrixMultiply
 
-         <kEBlockSize, kFBlockSize, kEBlockSize, kEBlockSize, 0>(
 
-         buffer + it1->second, e_block_size, block1_size,
 
-         inverse_ete.data(), e_block_size, e_block_size,
 
-         b1_transpose_inverse_ete, 0, 0, block1_size, e_block_size);
 
-     // clang-format on
 
-     BufferLayoutType::const_iterator it2 = it1;
 
-     for (; it2 != buffer_layout.end(); ++it2) {
 
-       const int block2 = it2->first - num_eliminate_blocks_;
 
-       int r, c, row_stride, col_stride;
 
-       CellInfo* cell_info =
 
-           lhs->GetCell(block1, block2, &r, &c, &row_stride, &col_stride);
 
-       if (cell_info != NULL) {
 
-         const int block2_size = bs->cols[it2->first].size;
 
-         std::lock_guard<std::mutex> l(cell_info->m);
 
-         // clang-format off
 
-         MatrixMatrixMultiply
 
-             <kFBlockSize, kEBlockSize, kEBlockSize, kFBlockSize, -1>(
 
-                 b1_transpose_inverse_ete, block1_size, e_block_size,
 
-                 buffer  + it2->second, e_block_size, block2_size,
 
-                 cell_info->values, r, c, row_stride, col_stride);
 
-         // clang-format on
 
-       }
 
-     }
 
-   }
 
- }
 
- // For rows with no e_blocks, the schur complement update reduces to S
 
- // += F'F. This function iterates over the rows of A with no e_block,
 
- // and calls NoEBlockRowOuterProduct on each row.
 
- template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
 
- void SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::
 
-     NoEBlockRowsUpdate(const BlockSparseMatrixData& A,
 
-                        const double* b,
 
-                        int row_block_counter,
 
-                        BlockRandomAccessMatrix* lhs,
 
-                        double* rhs) {
 
-   const CompressedRowBlockStructure* bs = A.block_structure();
 
-   const double* values = A.values();
 
-   for (; row_block_counter < bs->rows.size(); ++row_block_counter) {
 
-     NoEBlockRowOuterProduct(A, row_block_counter, lhs);
 
-     if (!rhs) {
 
-       continue;
 
-     }
 
-     const CompressedRow& row = bs->rows[row_block_counter];
 
-     for (int c = 0; c < row.cells.size(); ++c) {
 
-       const int block_id = row.cells[c].block_id;
 
-       const int block_size = bs->cols[block_id].size;
 
-       const int block = block_id - num_eliminate_blocks_;
 
-       // clang-format off
 
-       MatrixTransposeVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>(
 
-           values + row.cells[c].position, row.block.size, block_size,
 
-           b + row.block.position,
 
-           rhs + lhs_row_layout_[block]);
 
-       // clang-format on
 
-     }
 
-   }
 
- }
 
- // A row r of A, which has no e_blocks gets added to the Schur
 
- // Complement as S += r r'. This function is responsible for computing
 
- // the contribution of a single row r to the Schur complement. It is
 
- // very similar in structure to EBlockRowOuterProduct except for
 
- // one difference. It does not use any of the template
 
- // parameters. This is because the algorithm used for detecting the
 
- // static structure of the matrix A only pays attention to rows with
 
- // e_blocks. This is because rows without e_blocks are rare and
 
- // typically arise from regularization terms in the original
 
- // optimization problem, and have a very different structure than the
 
- // rows with e_blocks. Including them in the static structure
 
- // detection will lead to most template parameters being set to
 
- // dynamic. Since the number of rows without e_blocks is small, the
 
- // lack of templating is not an issue.
 
- template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
 
- void SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::
 
-     NoEBlockRowOuterProduct(const BlockSparseMatrixData& A,
 
-                             int row_block_index,
 
-                             BlockRandomAccessMatrix* lhs) {
 
-   const CompressedRowBlockStructure* bs = A.block_structure();
 
-   const double* values = A.values();
 
-   const CompressedRow& row = bs->rows[row_block_index];
 
-   for (int i = 0; i < row.cells.size(); ++i) {
 
-     const int block1 = row.cells[i].block_id - num_eliminate_blocks_;
 
-     DCHECK_GE(block1, 0);
 
-     const int block1_size = bs->cols[row.cells[i].block_id].size;
 
-     int r, c, row_stride, col_stride;
 
-     CellInfo* cell_info =
 
-         lhs->GetCell(block1, block1, &r, &c, &row_stride, &col_stride);
 
-     if (cell_info != NULL) {
 
-       std::lock_guard<std::mutex> l(cell_info->m);
 
-       // This multiply currently ignores the fact that this is a
 
-       // symmetric outer product.
 
-       // clang-format off
 
-       MatrixTransposeMatrixMultiply
 
-           <Eigen::Dynamic, Eigen::Dynamic, Eigen::Dynamic, Eigen::Dynamic, 1>(
 
-               values + row.cells[i].position, row.block.size, block1_size,
 
-               values + row.cells[i].position, row.block.size, block1_size,
 
-               cell_info->values, r, c, row_stride, col_stride);
 
-       // clang-format on
 
-     }
 
-     for (int j = i + 1; j < row.cells.size(); ++j) {
 
-       const int block2 = row.cells[j].block_id - num_eliminate_blocks_;
 
-       DCHECK_GE(block2, 0);
 
-       DCHECK_LT(block1, block2);
 
-       int r, c, row_stride, col_stride;
 
-       CellInfo* cell_info =
 
-           lhs->GetCell(block1, block2, &r, &c, &row_stride, &col_stride);
 
-       if (cell_info != NULL) {
 
-         const int block2_size = bs->cols[row.cells[j].block_id].size;
 
-         std::lock_guard<std::mutex> l(cell_info->m);
 
-         // clang-format off
 
-         MatrixTransposeMatrixMultiply
 
-             <Eigen::Dynamic, Eigen::Dynamic, Eigen::Dynamic, Eigen::Dynamic, 1>(
 
-                 values + row.cells[i].position, row.block.size, block1_size,
 
-                 values + row.cells[j].position, row.block.size, block2_size,
 
-                 cell_info->values, r, c, row_stride, col_stride);
 
-         // clang-format on
 
-       }
 
-     }
 
-   }
 
- }
 
- // For a row with an e_block, compute the contribution S += F'F. This
 
- // function has the same structure as NoEBlockRowOuterProduct, except
 
- // that this function uses the template parameters.
 
- template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
 
- void SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::
 
-     EBlockRowOuterProduct(const BlockSparseMatrixData& A,
 
-                           int row_block_index,
 
-                           BlockRandomAccessMatrix* lhs) {
 
-   const CompressedRowBlockStructure* bs = A.block_structure();
 
-   const double* values = A.values();
 
-   const CompressedRow& row = bs->rows[row_block_index];
 
-   for (int i = 1; i < row.cells.size(); ++i) {
 
-     const int block1 = row.cells[i].block_id - num_eliminate_blocks_;
 
-     DCHECK_GE(block1, 0);
 
-     const int block1_size = bs->cols[row.cells[i].block_id].size;
 
-     int r, c, row_stride, col_stride;
 
-     CellInfo* cell_info =
 
-         lhs->GetCell(block1, block1, &r, &c, &row_stride, &col_stride);
 
-     if (cell_info != NULL) {
 
-       std::lock_guard<std::mutex> l(cell_info->m);
 
-       // block += b1.transpose() * b1;
 
-       // clang-format off
 
-       MatrixTransposeMatrixMultiply
 
-           <kRowBlockSize, kFBlockSize, kRowBlockSize, kFBlockSize, 1>(
 
-           values + row.cells[i].position, row.block.size, block1_size,
 
-           values + row.cells[i].position, row.block.size, block1_size,
 
-           cell_info->values, r, c, row_stride, col_stride);
 
-       // clang-format on
 
-     }
 
-     for (int j = i + 1; j < row.cells.size(); ++j) {
 
-       const int block2 = row.cells[j].block_id - num_eliminate_blocks_;
 
-       DCHECK_GE(block2, 0);
 
-       DCHECK_LT(block1, block2);
 
-       const int block2_size = bs->cols[row.cells[j].block_id].size;
 
-       int r, c, row_stride, col_stride;
 
-       CellInfo* cell_info =
 
-           lhs->GetCell(block1, block2, &r, &c, &row_stride, &col_stride);
 
-       if (cell_info != NULL) {
 
-         // block += b1.transpose() * b2;
 
-         std::lock_guard<std::mutex> l(cell_info->m);
 
-         // clang-format off
 
-         MatrixTransposeMatrixMultiply
 
-             <kRowBlockSize, kFBlockSize, kRowBlockSize, kFBlockSize, 1>(
 
-                 values + row.cells[i].position, row.block.size, block1_size,
 
-                 values + row.cells[j].position, row.block.size, block2_size,
 
-                 cell_info->values, r, c, row_stride, col_stride);
 
-         // clang-format on
 
-       }
 
-     }
 
-   }
 
- }
 
- }  // namespace internal
 
- }  // namespace ceres
 
- #endif  // CERES_INTERNAL_SCHUR_ELIMINATOR_IMPL_H_
 
 
  |