| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2015 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: moll.markus@arcor.de (Markus Moll)//         sameeragarwal@google.com (Sameer Agarwal)#include "ceres/polynomial.h"#include <cmath>#include <cstddef>#include <vector>#include "Eigen/Dense"#include "ceres/function_sample.h"#include "ceres/internal/port.h"#include "glog/logging.h"namespace ceres {namespace internal {using std::vector;namespace {// Balancing function as described by B. N. Parlett and C. Reinsch,// "Balancing a Matrix for Calculation of Eigenvalues and Eigenvectors".// In: Numerische Mathematik, Volume 13, Number 4 (1969), 293-304,// Springer Berlin / Heidelberg. DOI: 10.1007/BF02165404void BalanceCompanionMatrix(Matrix* companion_matrix_ptr) {  CHECK(companion_matrix_ptr != nullptr);  Matrix& companion_matrix = *companion_matrix_ptr;  Matrix companion_matrix_offdiagonal = companion_matrix;  companion_matrix_offdiagonal.diagonal().setZero();  const int degree = companion_matrix.rows();  // gamma <= 1 controls how much a change in the scaling has to  // lower the 1-norm of the companion matrix to be accepted.  //  // gamma = 1 seems to lead to cycles (numerical issues?), so  // we set it slightly lower.  const double gamma = 0.9;  // Greedily scale row/column pairs until there is no change.  bool scaling_has_changed;  do {    scaling_has_changed = false;    for (int i = 0; i < degree; ++i) {      const double row_norm = companion_matrix_offdiagonal.row(i).lpNorm<1>();      const double col_norm = companion_matrix_offdiagonal.col(i).lpNorm<1>();      // Decompose row_norm/col_norm into mantissa * 2^exponent,      // where 0.5 <= mantissa < 1. Discard mantissa (return value      // of frexp), as only the exponent is needed.      int exponent = 0;      std::frexp(row_norm / col_norm, &exponent);      exponent /= 2;      if (exponent != 0) {        const double scaled_col_norm = std::ldexp(col_norm, exponent);        const double scaled_row_norm = std::ldexp(row_norm, -exponent);        if (scaled_col_norm + scaled_row_norm < gamma * (col_norm + row_norm)) {          // Accept the new scaling. (Multiplication by powers of 2 should not          // introduce rounding errors (ignoring non-normalized numbers and          // over- or underflow))          scaling_has_changed = true;          companion_matrix_offdiagonal.row(i) *= std::ldexp(1.0, -exponent);          companion_matrix_offdiagonal.col(i) *= std::ldexp(1.0, exponent);        }      }    }  } while (scaling_has_changed);  companion_matrix_offdiagonal.diagonal() = companion_matrix.diagonal();  companion_matrix = companion_matrix_offdiagonal;  VLOG(3) << "Balanced companion matrix is\n" << companion_matrix;}void BuildCompanionMatrix(const Vector& polynomial,                          Matrix* companion_matrix_ptr) {  CHECK(companion_matrix_ptr != nullptr);  Matrix& companion_matrix = *companion_matrix_ptr;  const int degree = polynomial.size() - 1;  companion_matrix.resize(degree, degree);  companion_matrix.setZero();  companion_matrix.diagonal(-1).setOnes();  companion_matrix.col(degree - 1) = -polynomial.reverse().head(degree);}// Remove leading terms with zero coefficients.Vector RemoveLeadingZeros(const Vector& polynomial_in) {  int i = 0;  while (i < (polynomial_in.size() - 1) && polynomial_in(i) == 0.0) {    ++i;  }  return polynomial_in.tail(polynomial_in.size() - i);}void FindLinearPolynomialRoots(const Vector& polynomial,                               Vector* real,                               Vector* imaginary) {  CHECK_EQ(polynomial.size(), 2);  if (real != NULL) {    real->resize(1);    (*real)(0) = -polynomial(1) / polynomial(0);  }  if (imaginary != NULL) {    imaginary->setZero(1);  }}void FindQuadraticPolynomialRoots(const Vector& polynomial,                                  Vector* real,                                  Vector* imaginary) {  CHECK_EQ(polynomial.size(), 3);  const double a = polynomial(0);  const double b = polynomial(1);  const double c = polynomial(2);  const double D = b * b - 4 * a * c;  const double sqrt_D = sqrt(fabs(D));  if (real != NULL) {    real->setZero(2);  }  if (imaginary != NULL) {    imaginary->setZero(2);  }  // Real roots.  if (D >= 0) {    if (real != NULL) {      // Stable quadratic roots according to BKP Horn.      // http://people.csail.mit.edu/bkph/articles/Quadratics.pdf      if (b >= 0) {        (*real)(0) = (-b - sqrt_D) / (2.0 * a);        (*real)(1) = (2.0 * c) / (-b - sqrt_D);      } else {        (*real)(0) = (2.0 * c) / (-b + sqrt_D);        (*real)(1) = (-b + sqrt_D) / (2.0 * a);      }    }    return;  }  // Use the normal quadratic formula for the complex case.  if (real != NULL) {    (*real)(0) = -b / (2.0 * a);    (*real)(1) = -b / (2.0 * a);  }  if (imaginary != NULL) {    (*imaginary)(0) = sqrt_D / (2.0 * a);    (*imaginary)(1) = -sqrt_D / (2.0 * a);  }}}  // namespacebool FindPolynomialRoots(const Vector& polynomial_in,                         Vector* real,                         Vector* imaginary) {  if (polynomial_in.size() == 0) {    LOG(ERROR) << "Invalid polynomial of size 0 passed to FindPolynomialRoots";    return false;  }  Vector polynomial = RemoveLeadingZeros(polynomial_in);  const int degree = polynomial.size() - 1;  VLOG(3) << "Input polynomial: " << polynomial_in.transpose();  if (polynomial.size() != polynomial_in.size()) {    VLOG(3) << "Trimmed polynomial: " << polynomial.transpose();  }  // Is the polynomial constant?  if (degree == 0) {    LOG(WARNING) << "Trying to extract roots from a constant "                 << "polynomial in FindPolynomialRoots";    // We return true with no roots, not false, as if the polynomial is constant    // it is correct that there are no roots. It is not the case that they were    // there, but that we have failed to extract them.    return true;  }  // Linear  if (degree == 1) {    FindLinearPolynomialRoots(polynomial, real, imaginary);    return true;  }  // Quadratic  if (degree == 2) {    FindQuadraticPolynomialRoots(polynomial, real, imaginary);    return true;  }  // The degree is now known to be at least 3. For cubic or higher  // roots we use the method of companion matrices.  // Divide by leading term  const double leading_term = polynomial(0);  polynomial /= leading_term;  // Build and balance the companion matrix to the polynomial.  Matrix companion_matrix(degree, degree);  BuildCompanionMatrix(polynomial, &companion_matrix);  BalanceCompanionMatrix(&companion_matrix);  // Find its (complex) eigenvalues.  Eigen::EigenSolver<Matrix> solver(companion_matrix, false);  if (solver.info() != Eigen::Success) {    LOG(ERROR) << "Failed to extract eigenvalues from companion matrix.";    return false;  }  // Output roots  if (real != NULL) {    *real = solver.eigenvalues().real();  } else {    LOG(WARNING) << "NULL pointer passed as real argument to "                 << "FindPolynomialRoots. Real parts of the roots will not "                 << "be returned.";  }  if (imaginary != NULL) {    *imaginary = solver.eigenvalues().imag();  }  return true;}Vector DifferentiatePolynomial(const Vector& polynomial) {  const int degree = polynomial.rows() - 1;  CHECK_GE(degree, 0);  // Degree zero polynomials are constants, and their derivative does  // not result in a smaller degree polynomial, just a degree zero  // polynomial with value zero.  if (degree == 0) {    return Eigen::VectorXd::Zero(1);  }  Vector derivative(degree);  for (int i = 0; i < degree; ++i) {    derivative(i) = (degree - i) * polynomial(i);  }  return derivative;}void MinimizePolynomial(const Vector& polynomial,                        const double x_min,                        const double x_max,                        double* optimal_x,                        double* optimal_value) {  // Find the minimum of the polynomial at the two ends.  //  // We start by inspecting the middle of the interval. Technically  // this is not needed, but we do this to make this code as close to  // the minFunc package as possible.  *optimal_x = (x_min + x_max) / 2.0;  *optimal_value = EvaluatePolynomial(polynomial, *optimal_x);  const double x_min_value = EvaluatePolynomial(polynomial, x_min);  if (x_min_value < *optimal_value) {    *optimal_value = x_min_value;    *optimal_x = x_min;  }  const double x_max_value = EvaluatePolynomial(polynomial, x_max);  if (x_max_value < *optimal_value) {    *optimal_value = x_max_value;    *optimal_x = x_max;  }  // If the polynomial is linear or constant, we are done.  if (polynomial.rows() <= 2) {    return;  }  const Vector derivative = DifferentiatePolynomial(polynomial);  Vector roots_real;  if (!FindPolynomialRoots(derivative, &roots_real, NULL)) {    LOG(WARNING) << "Unable to find the critical points of "                 << "the interpolating polynomial.";    return;  }  // This is a bit of an overkill, as some of the roots may actually  // have a complex part, but its simpler to just check these values.  for (int i = 0; i < roots_real.rows(); ++i) {    const double root = roots_real(i);    if ((root < x_min) || (root > x_max)) {      continue;    }    const double value = EvaluatePolynomial(polynomial, root);    if (value < *optimal_value) {      *optimal_value = value;      *optimal_x = root;    }  }}Vector FindInterpolatingPolynomial(const vector<FunctionSample>& samples) {  const int num_samples = samples.size();  int num_constraints = 0;  for (int i = 0; i < num_samples; ++i) {    if (samples[i].value_is_valid) {      ++num_constraints;    }    if (samples[i].gradient_is_valid) {      ++num_constraints;    }  }  const int degree = num_constraints - 1;  Matrix lhs = Matrix::Zero(num_constraints, num_constraints);  Vector rhs = Vector::Zero(num_constraints);  int row = 0;  for (int i = 0; i < num_samples; ++i) {    const FunctionSample& sample = samples[i];    if (sample.value_is_valid) {      for (int j = 0; j <= degree; ++j) {        lhs(row, j) = pow(sample.x, degree - j);      }      rhs(row) = sample.value;      ++row;    }    if (sample.gradient_is_valid) {      for (int j = 0; j < degree; ++j) {        lhs(row, j) = (degree - j) * pow(sample.x, degree - j - 1);      }      rhs(row) = sample.gradient;      ++row;    }  }  // TODO(sameeragarwal): This is a hack.  // https://github.com/ceres-solver/ceres-solver/issues/248  Eigen::FullPivLU<Matrix> lu(lhs);  return lu.setThreshold(0.0).solve(rhs);}void MinimizeInterpolatingPolynomial(const vector<FunctionSample>& samples,                                     double x_min,                                     double x_max,                                     double* optimal_x,                                     double* optimal_value) {  const Vector polynomial = FindInterpolatingPolynomial(samples);  MinimizePolynomial(polynomial, x_min, x_max, optimal_x, optimal_value);  for (int i = 0; i < samples.size(); ++i) {    const FunctionSample& sample = samples[i];    if ((sample.x < x_min) || (sample.x > x_max)) {      continue;    }    const double value = EvaluatePolynomial(polynomial, sample.x);    if (value < *optimal_value) {      *optimal_x = sample.x;      *optimal_value = value;    }  }}}  // namespace internal}  // namespace ceres
 |