| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725 | 
							- // Ceres Solver - A fast non-linear least squares minimizer
 
- // Copyright 2015 Google Inc. All rights reserved.
 
- // http://ceres-solver.org/
 
- //
 
- // Redistribution and use in source and binary forms, with or without
 
- // modification, are permitted provided that the following conditions are met:
 
- //
 
- // * Redistributions of source code must retain the above copyright notice,
 
- //   this list of conditions and the following disclaimer.
 
- // * Redistributions in binary form must reproduce the above copyright notice,
 
- //   this list of conditions and the following disclaimer in the documentation
 
- //   and/or other materials provided with the distribution.
 
- // * Neither the name of Google Inc. nor the names of its contributors may be
 
- //   used to endorse or promote products derived from this software without
 
- //   specific prior written permission.
 
- //
 
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 
- // POSSIBILITY OF SUCH DAMAGE.
 
- //
 
- // Author: sameeragarwal@google.com (Sameer Agarwal)
 
- #include "ceres/linear_least_squares_problems.h"
 
- #include <cstdio>
 
- #include <memory>
 
- #include <string>
 
- #include <vector>
 
- #include "ceres/block_sparse_matrix.h"
 
- #include "ceres/block_structure.h"
 
- #include "ceres/casts.h"
 
- #include "ceres/file.h"
 
- #include "ceres/stringprintf.h"
 
- #include "ceres/triplet_sparse_matrix.h"
 
- #include "ceres/types.h"
 
- #include "glog/logging.h"
 
- namespace ceres {
 
- namespace internal {
 
- using std::string;
 
- LinearLeastSquaresProblem* CreateLinearLeastSquaresProblemFromId(int id) {
 
-   switch (id) {
 
-     case 0:
 
-       return LinearLeastSquaresProblem0();
 
-     case 1:
 
-       return LinearLeastSquaresProblem1();
 
-     case 2:
 
-       return LinearLeastSquaresProblem2();
 
-     case 3:
 
-       return LinearLeastSquaresProblem3();
 
-     case 4:
 
-       return LinearLeastSquaresProblem4();
 
-     default:
 
-       LOG(FATAL) << "Unknown problem id requested " << id;
 
-   }
 
-   return NULL;
 
- }
 
- /*
 
- A = [1   2]
 
-     [3   4]
 
-     [6 -10]
 
- b = [  8
 
-       18
 
-      -18]
 
- x = [2
 
-      3]
 
- D = [1
 
-      2]
 
- x_D = [1.78448275;
 
-        2.82327586;]
 
-  */
 
- LinearLeastSquaresProblem* LinearLeastSquaresProblem0() {
 
-   LinearLeastSquaresProblem* problem = new LinearLeastSquaresProblem;
 
-   TripletSparseMatrix* A = new TripletSparseMatrix(3, 2, 6);
 
-   problem->b.reset(new double[3]);
 
-   problem->D.reset(new double[2]);
 
-   problem->x.reset(new double[2]);
 
-   problem->x_D.reset(new double[2]);
 
-   int* Ai = A->mutable_rows();
 
-   int* Aj = A->mutable_cols();
 
-   double* Ax = A->mutable_values();
 
-   int counter = 0;
 
-   for (int i = 0; i < 3; ++i) {
 
-     for (int j = 0; j < 2; ++j) {
 
-       Ai[counter] = i;
 
-       Aj[counter] = j;
 
-       ++counter;
 
-     }
 
-   }
 
-   Ax[0] = 1.;
 
-   Ax[1] = 2.;
 
-   Ax[2] = 3.;
 
-   Ax[3] = 4.;
 
-   Ax[4] = 6;
 
-   Ax[5] = -10;
 
-   A->set_num_nonzeros(6);
 
-   problem->A.reset(A);
 
-   problem->b[0] = 8;
 
-   problem->b[1] = 18;
 
-   problem->b[2] = -18;
 
-   problem->x[0] = 2.0;
 
-   problem->x[1] = 3.0;
 
-   problem->D[0] = 1;
 
-   problem->D[1] = 2;
 
-   problem->x_D[0] = 1.78448275;
 
-   problem->x_D[1] = 2.82327586;
 
-   return problem;
 
- }
 
- /*
 
-       A = [1 0  | 2 0 0
 
-            3 0  | 0 4 0
 
-            0 5  | 0 0 6
 
-            0 7  | 8 0 0
 
-            0 9  | 1 0 0
 
-            0 0  | 1 1 1]
 
-       b = [0
 
-            1
 
-            2
 
-            3
 
-            4
 
-            5]
 
-       c = A'* b = [ 3
 
-                    67
 
-                    33
 
-                     9
 
-                    17]
 
-       A'A = [10    0    2   12   0
 
-               0  155   65    0  30
 
-               2   65   70    1   1
 
-              12    0    1   17   1
 
-               0   30    1    1  37]
 
-       S = [ 42.3419  -1.4000  -11.5806
 
-             -1.4000   2.6000    1.0000
 
-             11.5806   1.0000   31.1935]
 
-       r = [ 4.3032
 
-             5.4000
 
-             5.0323]
 
-       S\r = [ 0.2102
 
-               2.1367
 
-               0.1388]
 
-       A\b = [-2.3061
 
-               0.3172
 
-               0.2102
 
-               2.1367
 
-               0.1388]
 
- */
 
- // The following two functions create a TripletSparseMatrix and a
 
- // BlockSparseMatrix version of this problem.
 
- // TripletSparseMatrix version.
 
- LinearLeastSquaresProblem* LinearLeastSquaresProblem1() {
 
-   int num_rows = 6;
 
-   int num_cols = 5;
 
-   LinearLeastSquaresProblem* problem = new LinearLeastSquaresProblem;
 
-   TripletSparseMatrix* A =
 
-       new TripletSparseMatrix(num_rows, num_cols, num_rows * num_cols);
 
-   problem->b.reset(new double[num_rows]);
 
-   problem->D.reset(new double[num_cols]);
 
-   problem->num_eliminate_blocks = 2;
 
-   int* rows = A->mutable_rows();
 
-   int* cols = A->mutable_cols();
 
-   double* values = A->mutable_values();
 
-   int nnz = 0;
 
-   // Row 1
 
-   {
 
-     rows[nnz] = 0;
 
-     cols[nnz] = 0;
 
-     values[nnz++] = 1;
 
-     rows[nnz] = 0;
 
-     cols[nnz] = 2;
 
-     values[nnz++] = 2;
 
-   }
 
-   // Row 2
 
-   {
 
-     rows[nnz] = 1;
 
-     cols[nnz] = 0;
 
-     values[nnz++] = 3;
 
-     rows[nnz] = 1;
 
-     cols[nnz] = 3;
 
-     values[nnz++] = 4;
 
-   }
 
-   // Row 3
 
-   {
 
-     rows[nnz] = 2;
 
-     cols[nnz] = 1;
 
-     values[nnz++] = 5;
 
-     rows[nnz] = 2;
 
-     cols[nnz] = 4;
 
-     values[nnz++] = 6;
 
-   }
 
-   // Row 4
 
-   {
 
-     rows[nnz] = 3;
 
-     cols[nnz] = 1;
 
-     values[nnz++] = 7;
 
-     rows[nnz] = 3;
 
-     cols[nnz] = 2;
 
-     values[nnz++] = 8;
 
-   }
 
-   // Row 5
 
-   {
 
-     rows[nnz] = 4;
 
-     cols[nnz] = 1;
 
-     values[nnz++] = 9;
 
-     rows[nnz] = 4;
 
-     cols[nnz] = 2;
 
-     values[nnz++] = 1;
 
-   }
 
-   // Row 6
 
-   {
 
-     rows[nnz] = 5;
 
-     cols[nnz] = 2;
 
-     values[nnz++] = 1;
 
-     rows[nnz] = 5;
 
-     cols[nnz] = 3;
 
-     values[nnz++] = 1;
 
-     rows[nnz] = 5;
 
-     cols[nnz] = 4;
 
-     values[nnz++] = 1;
 
-   }
 
-   A->set_num_nonzeros(nnz);
 
-   CHECK(A->IsValid());
 
-   problem->A.reset(A);
 
-   for (int i = 0; i < num_cols; ++i) {
 
-     problem->D.get()[i] = 1;
 
-   }
 
-   for (int i = 0; i < num_rows; ++i) {
 
-     problem->b.get()[i] = i;
 
-   }
 
-   return problem;
 
- }
 
- // BlockSparseMatrix version
 
- LinearLeastSquaresProblem* LinearLeastSquaresProblem2() {
 
-   int num_rows = 6;
 
-   int num_cols = 5;
 
-   LinearLeastSquaresProblem* problem = new LinearLeastSquaresProblem;
 
-   problem->b.reset(new double[num_rows]);
 
-   problem->D.reset(new double[num_cols]);
 
-   problem->num_eliminate_blocks = 2;
 
-   CompressedRowBlockStructure* bs = new CompressedRowBlockStructure;
 
-   std::unique_ptr<double[]> values(new double[num_rows * num_cols]);
 
-   for (int c = 0; c < num_cols; ++c) {
 
-     bs->cols.push_back(Block());
 
-     bs->cols.back().size = 1;
 
-     bs->cols.back().position = c;
 
-   }
 
-   int nnz = 0;
 
-   // Row 1
 
-   {
 
-     values[nnz++] = 1;
 
-     values[nnz++] = 2;
 
-     bs->rows.push_back(CompressedRow());
 
-     CompressedRow& row = bs->rows.back();
 
-     row.block.size = 1;
 
-     row.block.position = 0;
 
-     row.cells.push_back(Cell(0, 0));
 
-     row.cells.push_back(Cell(2, 1));
 
-   }
 
-   // Row 2
 
-   {
 
-     values[nnz++] = 3;
 
-     values[nnz++] = 4;
 
-     bs->rows.push_back(CompressedRow());
 
-     CompressedRow& row = bs->rows.back();
 
-     row.block.size = 1;
 
-     row.block.position = 1;
 
-     row.cells.push_back(Cell(0, 2));
 
-     row.cells.push_back(Cell(3, 3));
 
-   }
 
-   // Row 3
 
-   {
 
-     values[nnz++] = 5;
 
-     values[nnz++] = 6;
 
-     bs->rows.push_back(CompressedRow());
 
-     CompressedRow& row = bs->rows.back();
 
-     row.block.size = 1;
 
-     row.block.position = 2;
 
-     row.cells.push_back(Cell(1, 4));
 
-     row.cells.push_back(Cell(4, 5));
 
-   }
 
-   // Row 4
 
-   {
 
-     values[nnz++] = 7;
 
-     values[nnz++] = 8;
 
-     bs->rows.push_back(CompressedRow());
 
-     CompressedRow& row = bs->rows.back();
 
-     row.block.size = 1;
 
-     row.block.position = 3;
 
-     row.cells.push_back(Cell(1, 6));
 
-     row.cells.push_back(Cell(2, 7));
 
-   }
 
-   // Row 5
 
-   {
 
-     values[nnz++] = 9;
 
-     values[nnz++] = 1;
 
-     bs->rows.push_back(CompressedRow());
 
-     CompressedRow& row = bs->rows.back();
 
-     row.block.size = 1;
 
-     row.block.position = 4;
 
-     row.cells.push_back(Cell(1, 8));
 
-     row.cells.push_back(Cell(2, 9));
 
-   }
 
-   // Row 6
 
-   {
 
-     values[nnz++] = 1;
 
-     values[nnz++] = 1;
 
-     values[nnz++] = 1;
 
-     bs->rows.push_back(CompressedRow());
 
-     CompressedRow& row = bs->rows.back();
 
-     row.block.size = 1;
 
-     row.block.position = 5;
 
-     row.cells.push_back(Cell(2, 10));
 
-     row.cells.push_back(Cell(3, 11));
 
-     row.cells.push_back(Cell(4, 12));
 
-   }
 
-   BlockSparseMatrix* A = new BlockSparseMatrix(bs);
 
-   memcpy(A->mutable_values(), values.get(), nnz * sizeof(*A->values()));
 
-   for (int i = 0; i < num_cols; ++i) {
 
-     problem->D.get()[i] = 1;
 
-   }
 
-   for (int i = 0; i < num_rows; ++i) {
 
-     problem->b.get()[i] = i;
 
-   }
 
-   problem->A.reset(A);
 
-   return problem;
 
- }
 
- /*
 
-       A = [1 0
 
-            3 0
 
-            0 5
 
-            0 7
 
-            0 9
 
-            0 0]
 
-       b = [0
 
-            1
 
-            2
 
-            3
 
-            4
 
-            5]
 
- */
 
- // BlockSparseMatrix version
 
- LinearLeastSquaresProblem* LinearLeastSquaresProblem3() {
 
-   int num_rows = 5;
 
-   int num_cols = 2;
 
-   LinearLeastSquaresProblem* problem = new LinearLeastSquaresProblem;
 
-   problem->b.reset(new double[num_rows]);
 
-   problem->D.reset(new double[num_cols]);
 
-   problem->num_eliminate_blocks = 2;
 
-   CompressedRowBlockStructure* bs = new CompressedRowBlockStructure;
 
-   std::unique_ptr<double[]> values(new double[num_rows * num_cols]);
 
-   for (int c = 0; c < num_cols; ++c) {
 
-     bs->cols.push_back(Block());
 
-     bs->cols.back().size = 1;
 
-     bs->cols.back().position = c;
 
-   }
 
-   int nnz = 0;
 
-   // Row 1
 
-   {
 
-     values[nnz++] = 1;
 
-     bs->rows.push_back(CompressedRow());
 
-     CompressedRow& row = bs->rows.back();
 
-     row.block.size = 1;
 
-     row.block.position = 0;
 
-     row.cells.push_back(Cell(0, 0));
 
-   }
 
-   // Row 2
 
-   {
 
-     values[nnz++] = 3;
 
-     bs->rows.push_back(CompressedRow());
 
-     CompressedRow& row = bs->rows.back();
 
-     row.block.size = 1;
 
-     row.block.position = 1;
 
-     row.cells.push_back(Cell(0, 1));
 
-   }
 
-   // Row 3
 
-   {
 
-     values[nnz++] = 5;
 
-     bs->rows.push_back(CompressedRow());
 
-     CompressedRow& row = bs->rows.back();
 
-     row.block.size = 1;
 
-     row.block.position = 2;
 
-     row.cells.push_back(Cell(1, 2));
 
-   }
 
-   // Row 4
 
-   {
 
-     values[nnz++] = 7;
 
-     bs->rows.push_back(CompressedRow());
 
-     CompressedRow& row = bs->rows.back();
 
-     row.block.size = 1;
 
-     row.block.position = 3;
 
-     row.cells.push_back(Cell(1, 3));
 
-   }
 
-   // Row 5
 
-   {
 
-     values[nnz++] = 9;
 
-     bs->rows.push_back(CompressedRow());
 
-     CompressedRow& row = bs->rows.back();
 
-     row.block.size = 1;
 
-     row.block.position = 4;
 
-     row.cells.push_back(Cell(1, 4));
 
-   }
 
-   BlockSparseMatrix* A = new BlockSparseMatrix(bs);
 
-   memcpy(A->mutable_values(), values.get(), nnz * sizeof(*A->values()));
 
-   for (int i = 0; i < num_cols; ++i) {
 
-     problem->D.get()[i] = 1;
 
-   }
 
-   for (int i = 0; i < num_rows; ++i) {
 
-     problem->b.get()[i] = i;
 
-   }
 
-   problem->A.reset(A);
 
-   return problem;
 
- }
 
- /*
 
-       A = [1 2 0 0 0 1 1
 
-            1 4 0 0 0 5 6
 
-            0 0 9 0 0 3 1]
 
-       b = [0
 
-            1
 
-            2]
 
- */
 
- // BlockSparseMatrix version
 
- //
 
- // This problem has the unique property that it has two different
 
- // sized f-blocks, but only one of them occurs in the rows involving
 
- // the one e-block. So performing Schur elimination on this problem
 
- // tests the Schur Eliminator's ability to handle non-e-block rows
 
- // correctly when their structure does not conform to the static
 
- // structure determined by DetectStructure.
 
- //
 
- // NOTE: This problem is too small and rank deficient to be solved without
 
- // the diagonal regularization.
 
- LinearLeastSquaresProblem* LinearLeastSquaresProblem4() {
 
-   int num_rows = 3;
 
-   int num_cols = 7;
 
-   LinearLeastSquaresProblem* problem = new LinearLeastSquaresProblem;
 
-   problem->b.reset(new double[num_rows]);
 
-   problem->D.reset(new double[num_cols]);
 
-   problem->num_eliminate_blocks = 1;
 
-   CompressedRowBlockStructure* bs = new CompressedRowBlockStructure;
 
-   std::unique_ptr<double[]> values(new double[num_rows * num_cols]);
 
-   // Column block structure
 
-   bs->cols.push_back(Block());
 
-   bs->cols.back().size = 2;
 
-   bs->cols.back().position = 0;
 
-   bs->cols.push_back(Block());
 
-   bs->cols.back().size = 3;
 
-   bs->cols.back().position = 2;
 
-   bs->cols.push_back(Block());
 
-   bs->cols.back().size = 2;
 
-   bs->cols.back().position = 5;
 
-   int nnz = 0;
 
-   // Row 1 & 2
 
-   {
 
-     bs->rows.push_back(CompressedRow());
 
-     CompressedRow& row = bs->rows.back();
 
-     row.block.size = 2;
 
-     row.block.position = 0;
 
-     row.cells.push_back(Cell(0, nnz));
 
-     values[nnz++] = 1;
 
-     values[nnz++] = 2;
 
-     values[nnz++] = 1;
 
-     values[nnz++] = 4;
 
-     row.cells.push_back(Cell(2, nnz));
 
-     values[nnz++] = 1;
 
-     values[nnz++] = 1;
 
-     values[nnz++] = 5;
 
-     values[nnz++] = 6;
 
-   }
 
-   // Row 3
 
-   {
 
-     bs->rows.push_back(CompressedRow());
 
-     CompressedRow& row = bs->rows.back();
 
-     row.block.size = 1;
 
-     row.block.position = 2;
 
-     row.cells.push_back(Cell(1, nnz));
 
-     values[nnz++] = 9;
 
-     values[nnz++] = 0;
 
-     values[nnz++] = 0;
 
-     row.cells.push_back(Cell(2, nnz));
 
-     values[nnz++] = 3;
 
-     values[nnz++] = 1;
 
-   }
 
-   BlockSparseMatrix* A = new BlockSparseMatrix(bs);
 
-   memcpy(A->mutable_values(), values.get(), nnz * sizeof(*A->values()));
 
-   for (int i = 0; i < num_cols; ++i) {
 
-     problem->D.get()[i] = (i + 1) * 100;
 
-   }
 
-   for (int i = 0; i < num_rows; ++i) {
 
-     problem->b.get()[i] = i;
 
-   }
 
-   problem->A.reset(A);
 
-   return problem;
 
- }
 
- namespace {
 
- bool DumpLinearLeastSquaresProblemToConsole(const SparseMatrix* A,
 
-                                             const double* D,
 
-                                             const double* b,
 
-                                             const double* x,
 
-                                             int num_eliminate_blocks) {
 
-   CHECK(A != nullptr);
 
-   Matrix AA;
 
-   A->ToDenseMatrix(&AA);
 
-   LOG(INFO) << "A^T: \n" << AA.transpose();
 
-   if (D != NULL) {
 
-     LOG(INFO) << "A's appended diagonal:\n" << ConstVectorRef(D, A->num_cols());
 
-   }
 
-   if (b != NULL) {
 
-     LOG(INFO) << "b: \n" << ConstVectorRef(b, A->num_rows());
 
-   }
 
-   if (x != NULL) {
 
-     LOG(INFO) << "x: \n" << ConstVectorRef(x, A->num_cols());
 
-   }
 
-   return true;
 
- }
 
- void WriteArrayToFileOrDie(const string& filename,
 
-                            const double* x,
 
-                            const int size) {
 
-   CHECK(x != nullptr);
 
-   VLOG(2) << "Writing array to: " << filename;
 
-   FILE* fptr = fopen(filename.c_str(), "w");
 
-   CHECK(fptr != nullptr);
 
-   for (int i = 0; i < size; ++i) {
 
-     fprintf(fptr, "%17f\n", x[i]);
 
-   }
 
-   fclose(fptr);
 
- }
 
- bool DumpLinearLeastSquaresProblemToTextFile(const string& filename_base,
 
-                                              const SparseMatrix* A,
 
-                                              const double* D,
 
-                                              const double* b,
 
-                                              const double* x,
 
-                                              int num_eliminate_blocks) {
 
-   CHECK(A != nullptr);
 
-   LOG(INFO) << "writing to: " << filename_base << "*";
 
-   string matlab_script;
 
-   StringAppendF(&matlab_script,
 
-                 "function lsqp = load_trust_region_problem()\n");
 
-   StringAppendF(&matlab_script, "lsqp.num_rows = %d;\n", A->num_rows());
 
-   StringAppendF(&matlab_script, "lsqp.num_cols = %d;\n", A->num_cols());
 
-   {
 
-     string filename = filename_base + "_A.txt";
 
-     FILE* fptr = fopen(filename.c_str(), "w");
 
-     CHECK(fptr != nullptr);
 
-     A->ToTextFile(fptr);
 
-     fclose(fptr);
 
-     StringAppendF(
 
-         &matlab_script, "tmp = load('%s', '-ascii');\n", filename.c_str());
 
-     StringAppendF(
 
-         &matlab_script,
 
-         "lsqp.A = sparse(tmp(:, 1) + 1, tmp(:, 2) + 1, tmp(:, 3), %d, %d);\n",
 
-         A->num_rows(),
 
-         A->num_cols());
 
-   }
 
-   if (D != NULL) {
 
-     string filename = filename_base + "_D.txt";
 
-     WriteArrayToFileOrDie(filename, D, A->num_cols());
 
-     StringAppendF(
 
-         &matlab_script, "lsqp.D = load('%s', '-ascii');\n", filename.c_str());
 
-   }
 
-   if (b != NULL) {
 
-     string filename = filename_base + "_b.txt";
 
-     WriteArrayToFileOrDie(filename, b, A->num_rows());
 
-     StringAppendF(
 
-         &matlab_script, "lsqp.b = load('%s', '-ascii');\n", filename.c_str());
 
-   }
 
-   if (x != NULL) {
 
-     string filename = filename_base + "_x.txt";
 
-     WriteArrayToFileOrDie(filename, x, A->num_cols());
 
-     StringAppendF(
 
-         &matlab_script, "lsqp.x = load('%s', '-ascii');\n", filename.c_str());
 
-   }
 
-   string matlab_filename = filename_base + ".m";
 
-   WriteStringToFileOrDie(matlab_script, matlab_filename);
 
-   return true;
 
- }
 
- }  // namespace
 
- bool DumpLinearLeastSquaresProblem(const string& filename_base,
 
-                                    DumpFormatType dump_format_type,
 
-                                    const SparseMatrix* A,
 
-                                    const double* D,
 
-                                    const double* b,
 
-                                    const double* x,
 
-                                    int num_eliminate_blocks) {
 
-   switch (dump_format_type) {
 
-     case CONSOLE:
 
-       return DumpLinearLeastSquaresProblemToConsole(
 
-           A, D, b, x, num_eliminate_blocks);
 
-     case TEXTFILE:
 
-       return DumpLinearLeastSquaresProblemToTextFile(
 
-           filename_base, A, D, b, x, num_eliminate_blocks);
 
-     default:
 
-       LOG(FATAL) << "Unknown DumpFormatType " << dump_format_type;
 
-   }
 
-   return true;
 
- }
 
- }  // namespace internal
 
- }  // namespace ceres
 
 
  |