| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190 | 
							- // Ceres Solver - A fast non-linear least squares minimizer
 
- // Copyright 2017 Google Inc. All rights reserved.
 
- // http://ceres-solver.org/
 
- //
 
- // Redistribution and use in source and binary forms, with or without
 
- // modification, are permitted provided that the following conditions are met:
 
- //
 
- // * Redistributions of source code must retain the above copyright notice,
 
- //   this list of conditions and the following disclaimer.
 
- // * Redistributions in binary form must reproduce the above copyright notice,
 
- //   this list of conditions and the following disclaimer in the documentation
 
- //   and/or other materials provided with the distribution.
 
- // * Neither the name of Google Inc. nor the names of its contributors may be
 
- //   used to endorse or promote products derived from this software without
 
- //   specific prior written permission.
 
- //
 
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 
- // POSSIBILITY OF SUCH DAMAGE.
 
- //
 
- // Author: sameeragarwal@google.com (Sameer Agarwal)
 
- #include "ceres/eigensparse.h"
 
- #ifdef CERES_USE_EIGEN_SPARSE
 
- #include <sstream>
 
- #include "Eigen/SparseCholesky"
 
- #include "Eigen/SparseCore"
 
- #include "ceres/compressed_row_sparse_matrix.h"
 
- #include "ceres/linear_solver.h"
 
- namespace ceres {
 
- namespace internal {
 
- // TODO(sameeragarwal): Use enable_if to clean up the implementations
 
- // for when Scalar == double.
 
- template <typename Solver>
 
- class EigenSparseCholeskyTemplate : public SparseCholesky {
 
-  public:
 
-   EigenSparseCholeskyTemplate() : analyzed_(false) {}
 
-   virtual ~EigenSparseCholeskyTemplate() {}
 
-   CompressedRowSparseMatrix::StorageType StorageType() const final {
 
-     return CompressedRowSparseMatrix::LOWER_TRIANGULAR;
 
-   }
 
-   LinearSolverTerminationType Factorize(
 
-       const Eigen::SparseMatrix<typename Solver::Scalar>& lhs,
 
-       std::string* message) {
 
-     if (!analyzed_) {
 
-       solver_.analyzePattern(lhs);
 
-       if (VLOG_IS_ON(2)) {
 
-         std::stringstream ss;
 
-         solver_.dumpMemory(ss);
 
-         VLOG(2) << "Symbolic Analysis\n" << ss.str();
 
-       }
 
-       if (solver_.info() != Eigen::Success) {
 
-         *message = "Eigen failure. Unable to find symbolic factorization.";
 
-         return LINEAR_SOLVER_FATAL_ERROR;
 
-       }
 
-       analyzed_ = true;
 
-     }
 
-     solver_.factorize(lhs);
 
-     if (solver_.info() != Eigen::Success) {
 
-       *message = "Eigen failure. Unable to find numeric factorization.";
 
-       return LINEAR_SOLVER_FAILURE;
 
-     }
 
-     return LINEAR_SOLVER_SUCCESS;
 
-   }
 
-   LinearSolverTerminationType Solve(const double* rhs_ptr,
 
-                                     double* solution_ptr,
 
-                                     std::string* message) {
 
-     CHECK(analyzed_) << "Solve called without a call to Factorize first.";
 
-     scalar_rhs_ = ConstVectorRef(rhs_ptr, solver_.cols())
 
-                       .template cast<typename Solver::Scalar>();
 
-     // The two casts are needed if the Scalar in this class is not
 
-     // double. For code simplicity we are going to assume that Eigen
 
-     // is smart enough to figure out that casting a double Vector to a
 
-     // double Vector is a straight copy. If this turns into a
 
-     // performance bottleneck (unlikely), we can revisit this.
 
-     scalar_solution_ = solver_.solve(scalar_rhs_);
 
-     VectorRef(solution_ptr, solver_.cols()) =
 
-         scalar_solution_.template cast<double>();
 
-     if (solver_.info() != Eigen::Success) {
 
-       *message = "Eigen failure. Unable to do triangular solve.";
 
-       return LINEAR_SOLVER_FAILURE;
 
-     }
 
-     return LINEAR_SOLVER_SUCCESS;
 
-   }
 
-   LinearSolverTerminationType Factorize(CompressedRowSparseMatrix* lhs,
 
-                                         std::string* message) final {
 
-     CHECK_EQ(lhs->storage_type(), StorageType());
 
-     typename Solver::Scalar* values_ptr = NULL;
 
-     if (std::is_same<typename Solver::Scalar, double>::value) {
 
-       values_ptr =
 
-           reinterpret_cast<typename Solver::Scalar*>(lhs->mutable_values());
 
-     } else {
 
-       // In the case where the scalar used in this class is not
 
-       // double. In that case, make a copy of the values array in the
 
-       // CompressedRowSparseMatrix and cast it to Scalar along the way.
 
-       values_ = ConstVectorRef(lhs->values(), lhs->num_nonzeros())
 
-                     .cast<typename Solver::Scalar>();
 
-       values_ptr = values_.data();
 
-     }
 
-     Eigen::MappedSparseMatrix<typename Solver::Scalar, Eigen::ColMajor>
 
-         eigen_lhs(lhs->num_rows(),
 
-                   lhs->num_rows(),
 
-                   lhs->num_nonzeros(),
 
-                   lhs->mutable_rows(),
 
-                   lhs->mutable_cols(),
 
-                   values_ptr);
 
-     return Factorize(eigen_lhs, message);
 
-   }
 
-  private:
 
-   Eigen::Matrix<typename Solver::Scalar, Eigen::Dynamic, 1> values_,
 
-       scalar_rhs_, scalar_solution_;
 
-   bool analyzed_;
 
-   Solver solver_;
 
- };
 
- std::unique_ptr<SparseCholesky> EigenSparseCholesky::Create(
 
-     const OrderingType ordering_type) {
 
-   std::unique_ptr<SparseCholesky> sparse_cholesky;
 
-   typedef Eigen::SimplicialLDLT<Eigen::SparseMatrix<double>,
 
-                                 Eigen::Upper,
 
-                                 Eigen::AMDOrdering<int>>
 
-       WithAMDOrdering;
 
-   typedef Eigen::SimplicialLDLT<Eigen::SparseMatrix<double>,
 
-                                 Eigen::Upper,
 
-                                 Eigen::NaturalOrdering<int>>
 
-       WithNaturalOrdering;
 
-   if (ordering_type == AMD) {
 
-     sparse_cholesky.reset(new EigenSparseCholeskyTemplate<WithAMDOrdering>());
 
-   } else {
 
-     sparse_cholesky.reset(
 
-         new EigenSparseCholeskyTemplate<WithNaturalOrdering>());
 
-   }
 
-   return sparse_cholesky;
 
- }
 
- EigenSparseCholesky::~EigenSparseCholesky() {}
 
- std::unique_ptr<SparseCholesky> FloatEigenSparseCholesky::Create(
 
-     const OrderingType ordering_type) {
 
-   std::unique_ptr<SparseCholesky> sparse_cholesky;
 
-   typedef Eigen::SimplicialLDLT<Eigen::SparseMatrix<float>,
 
-                                 Eigen::Upper,
 
-                                 Eigen::AMDOrdering<int>>
 
-       WithAMDOrdering;
 
-   typedef Eigen::SimplicialLDLT<Eigen::SparseMatrix<float>,
 
-                                 Eigen::Upper,
 
-                                 Eigen::NaturalOrdering<int>>
 
-       WithNaturalOrdering;
 
-   if (ordering_type == AMD) {
 
-     sparse_cholesky.reset(new EigenSparseCholeskyTemplate<WithAMDOrdering>());
 
-   } else {
 
-     sparse_cholesky.reset(
 
-         new EigenSparseCholeskyTemplate<WithNaturalOrdering>());
 
-   }
 
-   return sparse_cholesky;
 
- }
 
- FloatEigenSparseCholesky::~FloatEigenSparseCholesky() {}
 
- }  // namespace internal
 
- }  // namespace ceres
 
- #endif  // CERES_USE_EIGEN_SPARSE
 
 
  |