| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2015 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: sameeragarwal@google.com (Sameer Agarwal)#include "ceres/coordinate_descent_minimizer.h"#include <algorithm>#include <iterator>#include <memory>#include <numeric>#include <vector>#include "ceres/evaluator.h"#include "ceres/linear_solver.h"#include "ceres/minimizer.h"#include "ceres/parallel_for.h"#include "ceres/parameter_block.h"#include "ceres/parameter_block_ordering.h"#include "ceres/problem_impl.h"#include "ceres/program.h"#include "ceres/residual_block.h"#include "ceres/solver.h"#include "ceres/trust_region_minimizer.h"#include "ceres/trust_region_strategy.h"namespace ceres {namespace internal {using std::map;using std::max;using std::min;using std::set;using std::string;using std::vector;CoordinateDescentMinimizer::CoordinateDescentMinimizer(ContextImpl* context)    : context_(context) {  CHECK(context_ != nullptr);}CoordinateDescentMinimizer::~CoordinateDescentMinimizer() {}bool CoordinateDescentMinimizer::Init(    const Program& program,    const ProblemImpl::ParameterMap& parameter_map,    const ParameterBlockOrdering& ordering,    string* error) {  parameter_blocks_.clear();  independent_set_offsets_.clear();  independent_set_offsets_.push_back(0);  // Serialize the OrderedGroups into a vector of parameter block  // offsets for parallel access.  map<ParameterBlock*, int> parameter_block_index;  map<int, set<double*>> group_to_elements = ordering.group_to_elements();  for (const auto& g_t_e : group_to_elements) {    const auto& elements = g_t_e.second;    for (double* parameter_block : elements) {      parameter_blocks_.push_back(parameter_map.find(parameter_block)->second);      parameter_block_index[parameter_blocks_.back()] =          parameter_blocks_.size() - 1;    }    independent_set_offsets_.push_back(independent_set_offsets_.back() +                                       elements.size());  }  // The ordering does not have to contain all parameter blocks, so  // assign zero offsets/empty independent sets to these parameter  // blocks.  const vector<ParameterBlock*>& parameter_blocks = program.parameter_blocks();  for (int i = 0; i < parameter_blocks.size(); ++i) {    if (!ordering.IsMember(parameter_blocks[i]->mutable_user_state())) {      parameter_blocks_.push_back(parameter_blocks[i]);      independent_set_offsets_.push_back(independent_set_offsets_.back());    }  }  // Compute the set of residual blocks that depend on each parameter  // block.  residual_blocks_.resize(parameter_block_index.size());  const vector<ResidualBlock*>& residual_blocks = program.residual_blocks();  for (int i = 0; i < residual_blocks.size(); ++i) {    ResidualBlock* residual_block = residual_blocks[i];    const int num_parameter_blocks = residual_block->NumParameterBlocks();    for (int j = 0; j < num_parameter_blocks; ++j) {      ParameterBlock* parameter_block = residual_block->parameter_blocks()[j];      const auto it = parameter_block_index.find(parameter_block);      if (it != parameter_block_index.end()) {        residual_blocks_[it->second].push_back(residual_block);      }    }  }  evaluator_options_.linear_solver_type = DENSE_QR;  evaluator_options_.num_eliminate_blocks = 0;  evaluator_options_.num_threads = 1;  evaluator_options_.context = context_;  return true;}void CoordinateDescentMinimizer::Minimize(const Minimizer::Options& options,                                          double* parameters,                                          Solver::Summary* summary) {  // Set the state and mark all parameter blocks constant.  for (int i = 0; i < parameter_blocks_.size(); ++i) {    ParameterBlock* parameter_block = parameter_blocks_[i];    parameter_block->SetState(parameters + parameter_block->state_offset());    parameter_block->SetConstant();  }  std::unique_ptr<LinearSolver*[]> linear_solvers(      new LinearSolver*[options.num_threads]);  LinearSolver::Options linear_solver_options;  linear_solver_options.type = DENSE_QR;  linear_solver_options.context = context_;  for (int i = 0; i < options.num_threads; ++i) {    linear_solvers[i] = LinearSolver::Create(linear_solver_options);  }  for (int i = 0; i < independent_set_offsets_.size() - 1; ++i) {    const int num_problems =        independent_set_offsets_[i + 1] - independent_set_offsets_[i];    // Avoid parallelization overhead call if the set is empty.    if (num_problems == 0) {      continue;    }    const int num_inner_iteration_threads =        min(options.num_threads, num_problems);    evaluator_options_.num_threads =        max(1, options.num_threads / num_inner_iteration_threads);    // The parameter blocks in each independent set can be optimized    // in parallel, since they do not co-occur in any residual block.    ParallelFor(        context_,        independent_set_offsets_[i],        independent_set_offsets_[i + 1],        num_inner_iteration_threads,        [&](int thread_id, int j) {          ParameterBlock* parameter_block = parameter_blocks_[j];          const int old_index = parameter_block->index();          const int old_delta_offset = parameter_block->delta_offset();          parameter_block->SetVarying();          parameter_block->set_index(0);          parameter_block->set_delta_offset(0);          Program inner_program;          inner_program.mutable_parameter_blocks()->push_back(parameter_block);          *inner_program.mutable_residual_blocks() = residual_blocks_[j];          // TODO(sameeragarwal): Better error handling. Right now we          // assume that this is not going to lead to problems of any          // sort. Basically we should be checking for numerical failure          // of some sort.          //          // On the other hand, if the optimization is a failure, that in          // some ways is fine, since it won't change the parameters and          // we are fine.          Solver::Summary inner_summary;          Solve(&inner_program,                linear_solvers[thread_id],                parameters + parameter_block->state_offset(),                &inner_summary);          parameter_block->set_index(old_index);          parameter_block->set_delta_offset(old_delta_offset);          parameter_block->SetState(parameters +                                    parameter_block->state_offset());          parameter_block->SetConstant();        });  }  for (int i = 0; i < parameter_blocks_.size(); ++i) {    parameter_blocks_[i]->SetVarying();  }  for (int i = 0; i < options.num_threads; ++i) {    delete linear_solvers[i];  }}// Solve the optimization problem for one parameter block.void CoordinateDescentMinimizer::Solve(Program* program,                                       LinearSolver* linear_solver,                                       double* parameter,                                       Solver::Summary* summary) {  *summary = Solver::Summary();  summary->initial_cost = 0.0;  summary->fixed_cost = 0.0;  summary->final_cost = 0.0;  string error;  Minimizer::Options minimizer_options;  minimizer_options.evaluator.reset(      Evaluator::Create(evaluator_options_, program, &error));  CHECK(minimizer_options.evaluator != nullptr);  minimizer_options.jacobian.reset(      minimizer_options.evaluator->CreateJacobian());  CHECK(minimizer_options.jacobian != nullptr);  TrustRegionStrategy::Options trs_options;  trs_options.linear_solver = linear_solver;  minimizer_options.trust_region_strategy.reset(      TrustRegionStrategy::Create(trs_options));  CHECK(minimizer_options.trust_region_strategy != nullptr);  minimizer_options.is_silent = true;  TrustRegionMinimizer minimizer;  minimizer.Minimize(minimizer_options, parameter, summary);}bool CoordinateDescentMinimizer::IsOrderingValid(    const Program& program,    const ParameterBlockOrdering& ordering,    string* message) {  const map<int, set<double*>>& group_to_elements =      ordering.group_to_elements();  // Verify that each group is an independent set  for (const auto& g_t_e : group_to_elements) {    if (!program.IsParameterBlockSetIndependent(g_t_e.second)) {      *message = StringPrintf(          "The user-provided parameter_blocks_for_inner_iterations does not "          "form an independent set. Group Id: %d",          g_t_e.first);      return false;    }  }  return true;}// Find a recursive decomposition of the Hessian matrix as a set// of independent sets of decreasing size and invert it. This// seems to work better in practice, i.e., Cameras before// points.ParameterBlockOrdering* CoordinateDescentMinimizer::CreateOrdering(    const Program& program) {  std::unique_ptr<ParameterBlockOrdering> ordering(new ParameterBlockOrdering);  ComputeRecursiveIndependentSetOrdering(program, ordering.get());  ordering->Reverse();  return ordering.release();}}  // namespace internal}  // namespace ceres
 |