| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2015 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: David Gallup (dgallup@google.com)//         Sameer Agarwal (sameeragarwal@google.com)#include "ceres/canonical_views_clustering.h"#include <unordered_map>#include <unordered_set>#include "ceres/graph.h"#include "ceres/map_util.h"#include "glog/logging.h"namespace ceres {namespace internal {using std::vector;typedef std::unordered_map<int, int> IntMap;typedef std::unordered_set<int> IntSet;class CanonicalViewsClustering { public:  CanonicalViewsClustering() {}  // Compute the canonical views clustering of the vertices of the  // graph. centers will contain the vertices that are the identified  // as the canonical views/cluster centers, and membership is a map  // from vertices to cluster_ids. The i^th cluster center corresponds  // to the i^th cluster. It is possible depending on the  // configuration of the clustering algorithm that some of the  // vertices may not be assigned to any cluster. In this case they  // are assigned to a cluster with id = kInvalidClusterId.  void ComputeClustering(const CanonicalViewsClusteringOptions& options,                         const WeightedGraph<int>& graph,                         vector<int>* centers,                         IntMap* membership); private:  void FindValidViews(IntSet* valid_views) const;  double ComputeClusteringQualityDifference(const int candidate,                                            const vector<int>& centers) const;  void UpdateCanonicalViewAssignments(const int canonical_view);  void ComputeClusterMembership(const vector<int>& centers,                                IntMap* membership) const;  CanonicalViewsClusteringOptions options_;  const WeightedGraph<int>* graph_;  // Maps a view to its representative canonical view (its cluster  // center).  IntMap view_to_canonical_view_;  // Maps a view to its similarity to its current cluster center.  std::unordered_map<int, double> view_to_canonical_view_similarity_;};void ComputeCanonicalViewsClustering(    const CanonicalViewsClusteringOptions& options,    const WeightedGraph<int>& graph,    vector<int>* centers,    IntMap* membership) {  time_t start_time = time(NULL);  CanonicalViewsClustering cv;  cv.ComputeClustering(options, graph, centers, membership);  VLOG(2) << "Canonical views clustering time (secs): "          << time(NULL) - start_time;}// Implementation of CanonicalViewsClusteringvoid CanonicalViewsClustering::ComputeClustering(    const CanonicalViewsClusteringOptions& options,    const WeightedGraph<int>& graph,    vector<int>* centers,    IntMap* membership) {  options_ = options;  CHECK(centers != nullptr);  CHECK(membership != nullptr);  centers->clear();  membership->clear();  graph_ = &graph;  IntSet valid_views;  FindValidViews(&valid_views);  while (valid_views.size() > 0) {    // Find the next best canonical view.    double best_difference = -std::numeric_limits<double>::max();    int best_view = 0;    // TODO(sameeragarwal): Make this loop multi-threaded.    for (const auto& view : valid_views) {      const double difference =          ComputeClusteringQualityDifference(view, *centers);      if (difference > best_difference) {        best_difference = difference;        best_view = view;      }    }    CHECK_GT(best_difference, -std::numeric_limits<double>::max());    // Add canonical view if quality improves, or if minimum is not    // yet met, otherwise break.    if ((best_difference <= 0) && (centers->size() >= options_.min_views)) {      break;    }    centers->push_back(best_view);    valid_views.erase(best_view);    UpdateCanonicalViewAssignments(best_view);  }  ComputeClusterMembership(*centers, membership);}// Return the set of vertices of the graph which have valid vertex// weights.void CanonicalViewsClustering::FindValidViews(IntSet* valid_views) const {  const IntSet& views = graph_->vertices();  for (const auto& view : views) {    if (graph_->VertexWeight(view) != WeightedGraph<int>::InvalidWeight()) {      valid_views->insert(view);    }  }}// Computes the difference in the quality score if 'candidate' were// added to the set of canonical views.double CanonicalViewsClustering::ComputeClusteringQualityDifference(    const int candidate, const vector<int>& centers) const {  // View score.  double difference =      options_.view_score_weight * graph_->VertexWeight(candidate);  // Compute how much the quality score changes if the candidate view  // was added to the list of canonical views and its nearest  // neighbors became members of its cluster.  const IntSet& neighbors = graph_->Neighbors(candidate);  for (const auto& neighbor : neighbors) {    const double old_similarity =        FindWithDefault(view_to_canonical_view_similarity_, neighbor, 0.0);    const double new_similarity = graph_->EdgeWeight(neighbor, candidate);    if (new_similarity > old_similarity) {      difference += new_similarity - old_similarity;    }  }  // Number of views penalty.  difference -= options_.size_penalty_weight;  // Orthogonality.  for (int i = 0; i < centers.size(); ++i) {    difference -= options_.similarity_penalty_weight *                  graph_->EdgeWeight(centers[i], candidate);  }  return difference;}// Reassign views if they're more similar to the new canonical view.void CanonicalViewsClustering::UpdateCanonicalViewAssignments(    const int canonical_view) {  const IntSet& neighbors = graph_->Neighbors(canonical_view);  for (const auto& neighbor : neighbors) {    const double old_similarity =        FindWithDefault(view_to_canonical_view_similarity_, neighbor, 0.0);    const double new_similarity = graph_->EdgeWeight(neighbor, canonical_view);    if (new_similarity > old_similarity) {      view_to_canonical_view_[neighbor] = canonical_view;      view_to_canonical_view_similarity_[neighbor] = new_similarity;    }  }}// Assign a cluster id to each view.void CanonicalViewsClustering::ComputeClusterMembership(    const vector<int>& centers, IntMap* membership) const {  CHECK(membership != nullptr);  membership->clear();  // The i^th cluster has cluster id i.  IntMap center_to_cluster_id;  for (int i = 0; i < centers.size(); ++i) {    center_to_cluster_id[centers[i]] = i;  }  static constexpr int kInvalidClusterId = -1;  const IntSet& views = graph_->vertices();  for (const auto& view : views) {    auto it = view_to_canonical_view_.find(view);    int cluster_id = kInvalidClusterId;    if (it != view_to_canonical_view_.end()) {      cluster_id = FindOrDie(center_to_cluster_id, it->second);    }    InsertOrDie(membership, view, cluster_id);  }}}  // namespace internal}  // namespace ceres
 |