| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2019 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: keir@google.com (Keir Mierle)//         sameeragarwal@google.com (Sameer Agarwal)//// Templated functions for manipulating rotations. The templated// functions are useful when implementing functors for automatic// differentiation.//// In the following, the Quaternions are laid out as 4-vectors, thus:////   q[0]  scalar part.//   q[1]  coefficient of i.//   q[2]  coefficient of j.//   q[3]  coefficient of k.//// where: i*i = j*j = k*k = -1 and i*j = k, j*k = i, k*i = j.#ifndef CERES_PUBLIC_ROTATION_H_#define CERES_PUBLIC_ROTATION_H_#include <algorithm>#include <cmath>#include <limits>#include "glog/logging.h"namespace ceres {// Trivial wrapper to index linear arrays as matrices, given a fixed// column and row stride. When an array "T* array" is wrapped by a////   (const) MatrixAdapter<T, row_stride, col_stride> M"//// the expression  M(i, j) is equivalent to////   arrary[i * row_stride + j * col_stride]//// Conversion functions to and from rotation matrices accept// MatrixAdapters to permit using row-major and column-major layouts,// and rotation matrices embedded in larger matrices (such as a 3x4// projection matrix).template <typename T, int row_stride, int col_stride>struct MatrixAdapter;// Convenience functions to create a MatrixAdapter that treats the// array pointed to by "pointer" as a 3x3 (contiguous) column-major or// row-major matrix.template <typename T>MatrixAdapter<T, 1, 3> ColumnMajorAdapter3x3(T* pointer);template <typename T>MatrixAdapter<T, 3, 1> RowMajorAdapter3x3(T* pointer);// Convert a value in combined axis-angle representation to a quaternion.// The value angle_axis is a triple whose norm is an angle in radians,// and whose direction is aligned with the axis of rotation,// and quaternion is a 4-tuple that will contain the resulting quaternion.// The implementation may be used with auto-differentiation up to the first// derivative, higher derivatives may have unexpected results near the origin.template <typename T>void AngleAxisToQuaternion(const T* angle_axis, T* quaternion);// Convert a quaternion to the equivalent combined axis-angle representation.// The value quaternion must be a unit quaternion - it is not normalized first,// and angle_axis will be filled with a value whose norm is the angle of// rotation in radians, and whose direction is the axis of rotation.// The implementation may be used with auto-differentiation up to the first// derivative, higher derivatives may have unexpected results near the origin.template <typename T>void QuaternionToAngleAxis(const T* quaternion, T* angle_axis);// Conversions between 3x3 rotation matrix (in column major order) and// quaternion rotation representations. Templated for use with// autodifferentiation.template <typename T>void RotationMatrixToQuaternion(const T* R, T* quaternion);template <typename T, int row_stride, int col_stride>void RotationMatrixToQuaternion(    const MatrixAdapter<const T, row_stride, col_stride>& R, T* quaternion);// Conversions between 3x3 rotation matrix (in column major order) and// axis-angle rotation representations. Templated for use with// autodifferentiation.template <typename T>void RotationMatrixToAngleAxis(const T* R, T* angle_axis);template <typename T, int row_stride, int col_stride>void RotationMatrixToAngleAxis(    const MatrixAdapter<const T, row_stride, col_stride>& R, T* angle_axis);template <typename T>void AngleAxisToRotationMatrix(const T* angle_axis, T* R);template <typename T, int row_stride, int col_stride>void AngleAxisToRotationMatrix(    const T* angle_axis, const MatrixAdapter<T, row_stride, col_stride>& R);// Conversions between 3x3 rotation matrix (in row major order) and// Euler angle (in degrees) rotation representations.//// The {pitch,roll,yaw} Euler angles are rotations around the {x,y,z}// axes, respectively.  They are applied in that same order, so the// total rotation R is Rz * Ry * Rx.template <typename T>void EulerAnglesToRotationMatrix(const T* euler, int row_stride, T* R);template <typename T, int row_stride, int col_stride>void EulerAnglesToRotationMatrix(    const T* euler, const MatrixAdapter<T, row_stride, col_stride>& R);// Convert a 4-vector to a 3x3 scaled rotation matrix.//// The choice of rotation is such that the quaternion [1 0 0 0] goes to an// identity matrix and for small a, b, c the quaternion [1 a b c] goes to// the matrix////         [  0 -c  b ]//   I + 2 [  c  0 -a ] + higher order terms//         [ -b  a  0 ]//// which corresponds to a Rodrigues approximation, the last matrix being// the cross-product matrix of [a b c]. Together with the property that// R(q1 * q2) = R(q1) * R(q2) this uniquely defines the mapping from q to R.//// No normalization of the quaternion is performed, i.e.// R = ||q||^2 * Q, where Q is an orthonormal matrix// such that det(Q) = 1 and Q*Q' = I//// WARNING: The rotation matrix is ROW MAJORtemplate <typename T>inline void QuaternionToScaledRotation(const T q[4], T R[3 * 3]);template <typename T, int row_stride, int col_stride>inline void QuaternionToScaledRotation(    const T q[4], const MatrixAdapter<T, row_stride, col_stride>& R);// Same as above except that the rotation matrix is normalized by the// Frobenius norm, so that R * R' = I (and det(R) = 1).//// WARNING: The rotation matrix is ROW MAJORtemplate <typename T>inline void QuaternionToRotation(const T q[4], T R[3 * 3]);template <typename T, int row_stride, int col_stride>inline void QuaternionToRotation(    const T q[4], const MatrixAdapter<T, row_stride, col_stride>& R);// Rotates a point pt by a quaternion q:////   result = R(q) * pt//// Assumes the quaternion is unit norm. This assumption allows us to// write the transform as (something)*pt + pt, as is clear from the// formula below. If you pass in a quaternion with |q|^2 = 2 then you// WILL NOT get back 2 times the result you get for a unit quaternion.//// Inplace rotation is not supported. pt and result must point to different// memory locations, otherwise the result will be undefined.template <typename T>inline void UnitQuaternionRotatePoint(const T q[4], const T pt[3], T result[3]);// With this function you do not need to assume that q has unit norm.// It does assume that the norm is non-zero.//// Inplace rotation is not supported. pt and result must point to different// memory locations, otherwise the result will be undefined.template <typename T>inline void QuaternionRotatePoint(const T q[4], const T pt[3], T result[3]);// zw = z * w, where * is the Quaternion product between 4 vectors.//// Inplace quaternion product is not supported. The resulting quaternion zw must// not share the memory with the input quaternion z and w, otherwise the result// will be undefined.template <typename T>inline void QuaternionProduct(const T z[4], const T w[4], T zw[4]);// xy = x cross y;//// Inplace cross product is not supported. The resulting vector x_cross_y must// not share the memory with the input vectors x and y, otherwise the result// will be undefined.template <typename T>inline void CrossProduct(const T x[3], const T y[3], T x_cross_y[3]);template <typename T>inline T DotProduct(const T x[3], const T y[3]);// y = R(angle_axis) * x;//// Inplace rotation is not supported. pt and result must point to different// memory locations, otherwise the result will be undefined.template <typename T>inline void AngleAxisRotatePoint(const T angle_axis[3],                                 const T pt[3],                                 T result[3]);// --- IMPLEMENTATIONtemplate <typename T, int row_stride, int col_stride>struct MatrixAdapter {  T* pointer_;  explicit MatrixAdapter(T* pointer) : pointer_(pointer) {}  T& operator()(int r, int c) const {    return pointer_[r * row_stride + c * col_stride];  }};template <typename T>MatrixAdapter<T, 1, 3> ColumnMajorAdapter3x3(T* pointer) {  return MatrixAdapter<T, 1, 3>(pointer);}template <typename T>MatrixAdapter<T, 3, 1> RowMajorAdapter3x3(T* pointer) {  return MatrixAdapter<T, 3, 1>(pointer);}template <typename T>inline void AngleAxisToQuaternion(const T* angle_axis, T* quaternion) {  const T& a0 = angle_axis[0];  const T& a1 = angle_axis[1];  const T& a2 = angle_axis[2];  const T theta_squared = a0 * a0 + a1 * a1 + a2 * a2;  // For points not at the origin, the full conversion is numerically stable.  if (theta_squared > T(0.0)) {    const T theta = sqrt(theta_squared);    const T half_theta = theta * T(0.5);    const T k = sin(half_theta) / theta;    quaternion[0] = cos(half_theta);    quaternion[1] = a0 * k;    quaternion[2] = a1 * k;    quaternion[3] = a2 * k;  } else {    // At the origin, sqrt() will produce NaN in the derivative since    // the argument is zero.  By approximating with a Taylor series,    // and truncating at one term, the value and first derivatives will be    // computed correctly when Jets are used.    const T k(0.5);    quaternion[0] = T(1.0);    quaternion[1] = a0 * k;    quaternion[2] = a1 * k;    quaternion[3] = a2 * k;  }}template <typename T>inline void QuaternionToAngleAxis(const T* quaternion, T* angle_axis) {  const T& q1 = quaternion[1];  const T& q2 = quaternion[2];  const T& q3 = quaternion[3];  const T sin_squared_theta = q1 * q1 + q2 * q2 + q3 * q3;  // For quaternions representing non-zero rotation, the conversion  // is numerically stable.  if (sin_squared_theta > T(0.0)) {    const T sin_theta = sqrt(sin_squared_theta);    const T& cos_theta = quaternion[0];    // If cos_theta is negative, theta is greater than pi/2, which    // means that angle for the angle_axis vector which is 2 * theta    // would be greater than pi.    //    // While this will result in the correct rotation, it does not    // result in a normalized angle-axis vector.    //    // In that case we observe that 2 * theta ~ 2 * theta - 2 * pi,    // which is equivalent saying    //    //   theta - pi = atan(sin(theta - pi), cos(theta - pi))    //              = atan(-sin(theta), -cos(theta))    //    const T two_theta =        T(2.0) * ((cos_theta < T(0.0)) ? atan2(-sin_theta, -cos_theta)                                       : atan2(sin_theta, cos_theta));    const T k = two_theta / sin_theta;    angle_axis[0] = q1 * k;    angle_axis[1] = q2 * k;    angle_axis[2] = q3 * k;  } else {    // For zero rotation, sqrt() will produce NaN in the derivative since    // the argument is zero.  By approximating with a Taylor series,    // and truncating at one term, the value and first derivatives will be    // computed correctly when Jets are used.    const T k(2.0);    angle_axis[0] = q1 * k;    angle_axis[1] = q2 * k;    angle_axis[2] = q3 * k;  }}template <typename T>void RotationMatrixToQuaternion(const T* R, T* quaternion) {  RotationMatrixToQuaternion(ColumnMajorAdapter3x3(R), quaternion);}// This algorithm comes from "Quaternion Calculus and Fast Animation",// Ken Shoemake, 1987 SIGGRAPH course notestemplate <typename T, int row_stride, int col_stride>void RotationMatrixToQuaternion(    const MatrixAdapter<const T, row_stride, col_stride>& R, T* quaternion) {  const T trace = R(0, 0) + R(1, 1) + R(2, 2);  if (trace >= 0.0) {    T t = sqrt(trace + T(1.0));    quaternion[0] = T(0.5) * t;    t = T(0.5) / t;    quaternion[1] = (R(2, 1) - R(1, 2)) * t;    quaternion[2] = (R(0, 2) - R(2, 0)) * t;    quaternion[3] = (R(1, 0) - R(0, 1)) * t;  } else {    int i = 0;    if (R(1, 1) > R(0, 0)) {      i = 1;    }    if (R(2, 2) > R(i, i)) {      i = 2;    }    const int j = (i + 1) % 3;    const int k = (j + 1) % 3;    T t = sqrt(R(i, i) - R(j, j) - R(k, k) + T(1.0));    quaternion[i + 1] = T(0.5) * t;    t = T(0.5) / t;    quaternion[0] = (R(k, j) - R(j, k)) * t;    quaternion[j + 1] = (R(j, i) + R(i, j)) * t;    quaternion[k + 1] = (R(k, i) + R(i, k)) * t;  }}// The conversion of a rotation matrix to the angle-axis form is// numerically problematic when then rotation angle is close to zero// or to Pi. The following implementation detects when these two cases// occurs and deals with them by taking code paths that are guaranteed// to not perform division by a small number.template <typename T>inline void RotationMatrixToAngleAxis(const T* R, T* angle_axis) {  RotationMatrixToAngleAxis(ColumnMajorAdapter3x3(R), angle_axis);}template <typename T, int row_stride, int col_stride>void RotationMatrixToAngleAxis(    const MatrixAdapter<const T, row_stride, col_stride>& R, T* angle_axis) {  T quaternion[4];  RotationMatrixToQuaternion(R, quaternion);  QuaternionToAngleAxis(quaternion, angle_axis);  return;}template <typename T>inline void AngleAxisToRotationMatrix(const T* angle_axis, T* R) {  AngleAxisToRotationMatrix(angle_axis, ColumnMajorAdapter3x3(R));}template <typename T, int row_stride, int col_stride>void AngleAxisToRotationMatrix(    const T* angle_axis, const MatrixAdapter<T, row_stride, col_stride>& R) {  static const T kOne = T(1.0);  const T theta2 = DotProduct(angle_axis, angle_axis);  if (theta2 > T(std::numeric_limits<double>::epsilon())) {    // We want to be careful to only evaluate the square root if the    // norm of the angle_axis vector is greater than zero. Otherwise    // we get a division by zero.    const T theta = sqrt(theta2);    const T wx = angle_axis[0] / theta;    const T wy = angle_axis[1] / theta;    const T wz = angle_axis[2] / theta;    const T costheta = cos(theta);    const T sintheta = sin(theta);    // clang-format off    R(0, 0) =     costheta   + wx*wx*(kOne -    costheta);    R(1, 0) =  wz*sintheta   + wx*wy*(kOne -    costheta);    R(2, 0) = -wy*sintheta   + wx*wz*(kOne -    costheta);    R(0, 1) =  wx*wy*(kOne - costheta)     - wz*sintheta;    R(1, 1) =     costheta   + wy*wy*(kOne -    costheta);    R(2, 1) =  wx*sintheta   + wy*wz*(kOne -    costheta);    R(0, 2) =  wy*sintheta   + wx*wz*(kOne -    costheta);    R(1, 2) = -wx*sintheta   + wy*wz*(kOne -    costheta);    R(2, 2) =     costheta   + wz*wz*(kOne -    costheta);    // clang-format on  } else {    // Near zero, we switch to using the first order Taylor expansion.    R(0, 0) = kOne;    R(1, 0) = angle_axis[2];    R(2, 0) = -angle_axis[1];    R(0, 1) = -angle_axis[2];    R(1, 1) = kOne;    R(2, 1) = angle_axis[0];    R(0, 2) = angle_axis[1];    R(1, 2) = -angle_axis[0];    R(2, 2) = kOne;  }}template <typename T>inline void EulerAnglesToRotationMatrix(const T* euler,                                        const int row_stride_parameter,                                        T* R) {  EulerAnglesToRotationMatrix(euler, RowMajorAdapter3x3(R));}template <typename T, int row_stride, int col_stride>void EulerAnglesToRotationMatrix(    const T* euler, const MatrixAdapter<T, row_stride, col_stride>& R) {  const double kPi = 3.14159265358979323846;  const T degrees_to_radians(kPi / 180.0);  const T pitch(euler[0] * degrees_to_radians);  const T roll(euler[1] * degrees_to_radians);  const T yaw(euler[2] * degrees_to_radians);  const T c1 = cos(yaw);  const T s1 = sin(yaw);  const T c2 = cos(roll);  const T s2 = sin(roll);  const T c3 = cos(pitch);  const T s3 = sin(pitch);  R(0, 0) = c1 * c2;  R(0, 1) = -s1 * c3 + c1 * s2 * s3;  R(0, 2) = s1 * s3 + c1 * s2 * c3;  R(1, 0) = s1 * c2;  R(1, 1) = c1 * c3 + s1 * s2 * s3;  R(1, 2) = -c1 * s3 + s1 * s2 * c3;  R(2, 0) = -s2;  R(2, 1) = c2 * s3;  R(2, 2) = c2 * c3;}template <typename T>inline void QuaternionToScaledRotation(const T q[4], T R[3 * 3]) {  QuaternionToScaledRotation(q, RowMajorAdapter3x3(R));}template <typename T, int row_stride, int col_stride>inline void QuaternionToScaledRotation(    const T q[4], const MatrixAdapter<T, row_stride, col_stride>& R) {  // Make convenient names for elements of q.  T a = q[0];  T b = q[1];  T c = q[2];  T d = q[3];  // This is not to eliminate common sub-expression, but to  // make the lines shorter so that they fit in 80 columns!  T aa = a * a;  T ab = a * b;  T ac = a * c;  T ad = a * d;  T bb = b * b;  T bc = b * c;  T bd = b * d;  T cc = c * c;  T cd = c * d;  T dd = d * d;  // clang-format off  R(0, 0) = aa + bb - cc - dd; R(0, 1) = T(2) * (bc - ad);  R(0, 2) = T(2) * (ac + bd);  R(1, 0) = T(2) * (ad + bc);  R(1, 1) = aa - bb + cc - dd; R(1, 2) = T(2) * (cd - ab);  R(2, 0) = T(2) * (bd - ac);  R(2, 1) = T(2) * (ab + cd);  R(2, 2) = aa - bb - cc + dd;  // clang-format on}template <typename T>inline void QuaternionToRotation(const T q[4], T R[3 * 3]) {  QuaternionToRotation(q, RowMajorAdapter3x3(R));}template <typename T, int row_stride, int col_stride>inline void QuaternionToRotation(    const T q[4], const MatrixAdapter<T, row_stride, col_stride>& R) {  QuaternionToScaledRotation(q, R);  T normalizer = q[0] * q[0] + q[1] * q[1] + q[2] * q[2] + q[3] * q[3];  normalizer = T(1) / normalizer;  for (int i = 0; i < 3; ++i) {    for (int j = 0; j < 3; ++j) {      R(i, j) *= normalizer;    }  }}template <typename T>inline void UnitQuaternionRotatePoint(const T q[4],                                      const T pt[3],                                      T result[3]) {  DCHECK_NE(pt, result) << "Inplace rotation is not supported.";  // clang-format off  T uv0 = q[2] * pt[2] - q[3] * pt[1];  T uv1 = q[3] * pt[0] - q[1] * pt[2];  T uv2 = q[1] * pt[1] - q[2] * pt[0];  uv0 += uv0;  uv1 += uv1;  uv2 += uv2;  result[0] = pt[0] + q[0] * uv0;  result[1] = pt[1] + q[0] * uv1;  result[2] = pt[2] + q[0] * uv2;  result[0] += q[2] * uv2 - q[3] * uv1;  result[1] += q[3] * uv0 - q[1] * uv2;  result[2] += q[1] * uv1 - q[2] * uv0;  // clang-format on}template <typename T>inline void QuaternionRotatePoint(const T q[4], const T pt[3], T result[3]) {  DCHECK_NE(pt, result) << "Inplace rotation is not supported.";  // 'scale' is 1 / norm(q).  const T scale =      T(1) / sqrt(q[0] * q[0] + q[1] * q[1] + q[2] * q[2] + q[3] * q[3]);  // Make unit-norm version of q.  const T unit[4] = {      scale * q[0],      scale * q[1],      scale * q[2],      scale * q[3],  };  UnitQuaternionRotatePoint(unit, pt, result);}template <typename T>inline void QuaternionProduct(const T z[4], const T w[4], T zw[4]) {  DCHECK_NE(z, zw) << "Inplace quaternion product is not supported.";  DCHECK_NE(w, zw) << "Inplace quaternion product is not supported.";  // clang-format off  zw[0] = z[0] * w[0] - z[1] * w[1] - z[2] * w[2] - z[3] * w[3];  zw[1] = z[0] * w[1] + z[1] * w[0] + z[2] * w[3] - z[3] * w[2];  zw[2] = z[0] * w[2] - z[1] * w[3] + z[2] * w[0] + z[3] * w[1];  zw[3] = z[0] * w[3] + z[1] * w[2] - z[2] * w[1] + z[3] * w[0];  // clang-format on}// xy = x cross y;template <typename T>inline void CrossProduct(const T x[3], const T y[3], T x_cross_y[3]) {  DCHECK_NE(x, x_cross_y) << "Inplace cross product is not supported.";  DCHECK_NE(y, x_cross_y) << "Inplace cross product is not supported.";  x_cross_y[0] = x[1] * y[2] - x[2] * y[1];  x_cross_y[1] = x[2] * y[0] - x[0] * y[2];  x_cross_y[2] = x[0] * y[1] - x[1] * y[0];}template <typename T>inline T DotProduct(const T x[3], const T y[3]) {  return (x[0] * y[0] + x[1] * y[1] + x[2] * y[2]);}template <typename T>inline void AngleAxisRotatePoint(const T angle_axis[3],                                 const T pt[3],                                 T result[3]) {  DCHECK_NE(pt, result) << "Inplace rotation is not supported.";  const T theta2 = DotProduct(angle_axis, angle_axis);  if (theta2 > T(std::numeric_limits<double>::epsilon())) {    // Away from zero, use the rodriguez formula    //    //   result = pt costheta +    //            (w x pt) * sintheta +    //            w (w . pt) (1 - costheta)    //    // We want to be careful to only evaluate the square root if the    // norm of the angle_axis vector is greater than zero. Otherwise    // we get a division by zero.    //    const T theta = sqrt(theta2);    const T costheta = cos(theta);    const T sintheta = sin(theta);    const T theta_inverse = T(1.0) / theta;    const T w[3] = {angle_axis[0] * theta_inverse,                    angle_axis[1] * theta_inverse,                    angle_axis[2] * theta_inverse};    // Explicitly inlined evaluation of the cross product for    // performance reasons.    const T w_cross_pt[3] = {w[1] * pt[2] - w[2] * pt[1],                             w[2] * pt[0] - w[0] * pt[2],                             w[0] * pt[1] - w[1] * pt[0]};    const T tmp =        (w[0] * pt[0] + w[1] * pt[1] + w[2] * pt[2]) * (T(1.0) - costheta);    result[0] = pt[0] * costheta + w_cross_pt[0] * sintheta + w[0] * tmp;    result[1] = pt[1] * costheta + w_cross_pt[1] * sintheta + w[1] * tmp;    result[2] = pt[2] * costheta + w_cross_pt[2] * sintheta + w[2] * tmp;  } else {    // Near zero, the first order Taylor approximation of the rotation    // matrix R corresponding to a vector w and angle w is    //    //   R = I + hat(w) * sin(theta)    //    // But sintheta ~ theta and theta * w = angle_axis, which gives us    //    //  R = I + hat(w)    //    // and actually performing multiplication with the point pt, gives us    // R * pt = pt + w x pt.    //    // Switching to the Taylor expansion near zero provides meaningful    // derivatives when evaluated using Jets.    //    // Explicitly inlined evaluation of the cross product for    // performance reasons.    const T w_cross_pt[3] = {angle_axis[1] * pt[2] - angle_axis[2] * pt[1],                             angle_axis[2] * pt[0] - angle_axis[0] * pt[2],                             angle_axis[0] * pt[1] - angle_axis[1] * pt[0]};    result[0] = pt[0] + w_cross_pt[0];    result[1] = pt[1] + w_cross_pt[1];    result[2] = pt[2] + w_cross_pt[2];  }}}  // namespace ceres#endif  // CERES_PUBLIC_ROTATION_H_
 |