| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2015 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: sameeragarwal@google.com (Sameer Agarwal)//// An example of solving a dynamically sized problem with various// solvers and loss functions.//// For a simpler bare bones example of doing bundle adjustment with// Ceres, please see simple_bundle_adjuster.cc.//// NOTE: This example will not compile without gflags and SuiteSparse.//// The problem being solved here is known as a Bundle Adjustment// problem in computer vision. Given a set of 3d points X_1, ..., X_n,// a set of cameras P_1, ..., P_m. If the point X_i is visible in// image j, then there is a 2D observation u_ij that is the expected// projection of X_i using P_j. The aim of this optimization is to// find values of X_i and P_j such that the reprojection error////    E(X,P) =  sum_ij  |u_ij - P_j X_i|^2//// is minimized.//// The problem used here comes from a collection of bundle adjustment// problems published at University of Washington.// http://grail.cs.washington.edu/projects/bal#include <algorithm>#include <cmath>#include <cstdio>#include <cstdlib>#include <string>#include <vector>#include "bal_problem.h"#include "ceres/ceres.h"#include "gflags/gflags.h"#include "glog/logging.h"#include "snavely_reprojection_error.h"// clang-format makes the gflags definitions too verbose// clang-format offDEFINE_string(input, "", "Input File name");DEFINE_string(trust_region_strategy, "levenberg_marquardt",              "Options are: levenberg_marquardt, dogleg.");DEFINE_string(dogleg, "traditional_dogleg", "Options are: traditional_dogleg,"              "subspace_dogleg.");DEFINE_bool(inner_iterations, false, "Use inner iterations to non-linearly "            "refine each successful trust region step.");DEFINE_string(blocks_for_inner_iterations, "automatic", "Options are: "              "automatic, cameras, points, cameras,points, points,cameras");DEFINE_string(linear_solver, "sparse_schur", "Options are: "              "sparse_schur, dense_schur, iterative_schur, sparse_normal_cholesky, "              "dense_qr, dense_normal_cholesky and cgnr.");DEFINE_bool(explicit_schur_complement, false, "If using ITERATIVE_SCHUR "            "then explicitly compute the Schur complement.");DEFINE_string(preconditioner, "jacobi", "Options are: "              "identity, jacobi, schur_jacobi, cluster_jacobi, "              "cluster_tridiagonal.");DEFINE_string(visibility_clustering, "canonical_views",              "single_linkage, canonical_views");DEFINE_string(sparse_linear_algebra_library, "suite_sparse",              "Options are: suite_sparse and cx_sparse.");DEFINE_string(dense_linear_algebra_library, "eigen",              "Options are: eigen and lapack.");DEFINE_string(ordering, "automatic", "Options are: automatic, user.");DEFINE_bool(use_quaternions, false, "If true, uses quaternions to represent "            "rotations. If false, angle axis is used.");DEFINE_bool(use_local_parameterization, false, "For quaternions, use a local "            "parameterization.");DEFINE_bool(robustify, false, "Use a robust loss function.");DEFINE_double(eta, 1e-2, "Default value for eta. Eta determines the "              "accuracy of each linear solve of the truncated newton step. "              "Changing this parameter can affect solve performance.");DEFINE_int32(num_threads, 1, "Number of threads.");DEFINE_int32(num_iterations, 5, "Number of iterations.");DEFINE_double(max_solver_time, 1e32, "Maximum solve time in seconds.");DEFINE_bool(nonmonotonic_steps, false, "Trust region algorithm can use"            " nonmonotic steps.");DEFINE_double(rotation_sigma, 0.0, "Standard deviation of camera rotation "              "perturbation.");DEFINE_double(translation_sigma, 0.0, "Standard deviation of the camera "              "translation perturbation.");DEFINE_double(point_sigma, 0.0, "Standard deviation of the point "              "perturbation.");DEFINE_int32(random_seed, 38401, "Random seed used to set the state "             "of the pseudo random number generator used to generate "             "the pertubations.");DEFINE_bool(line_search, false, "Use a line search instead of trust region "            "algorithm.");DEFINE_bool(mixed_precision_solves, false, "Use mixed precision solves.");DEFINE_int32(max_num_refinement_iterations, 0, "Iterative refinement iterations");DEFINE_string(initial_ply, "", "Export the BAL file data as a PLY file.");DEFINE_string(final_ply, "", "Export the refined BAL file data as a PLY "              "file.");// clang-format onnamespace ceres {namespace examples {namespace {void SetLinearSolver(Solver::Options* options) {  CHECK(StringToLinearSolverType(CERES_GET_FLAG(FLAGS_linear_solver),                                 &options->linear_solver_type));  CHECK(StringToPreconditionerType(CERES_GET_FLAG(FLAGS_preconditioner),                                   &options->preconditioner_type));  CHECK(StringToVisibilityClusteringType(      CERES_GET_FLAG(FLAGS_visibility_clustering),      &options->visibility_clustering_type));  CHECK(StringToSparseLinearAlgebraLibraryType(      CERES_GET_FLAG(FLAGS_sparse_linear_algebra_library),      &options->sparse_linear_algebra_library_type));  CHECK(StringToDenseLinearAlgebraLibraryType(      CERES_GET_FLAG(FLAGS_dense_linear_algebra_library),      &options->dense_linear_algebra_library_type));  options->use_explicit_schur_complement =      CERES_GET_FLAG(FLAGS_explicit_schur_complement);  options->use_mixed_precision_solves =      CERES_GET_FLAG(FLAGS_mixed_precision_solves);  options->max_num_refinement_iterations =      CERES_GET_FLAG(FLAGS_max_num_refinement_iterations);}void SetOrdering(BALProblem* bal_problem, Solver::Options* options) {  const int num_points = bal_problem->num_points();  const int point_block_size = bal_problem->point_block_size();  double* points = bal_problem->mutable_points();  const int num_cameras = bal_problem->num_cameras();  const int camera_block_size = bal_problem->camera_block_size();  double* cameras = bal_problem->mutable_cameras();  if (options->use_inner_iterations) {    if (CERES_GET_FLAG(FLAGS_blocks_for_inner_iterations) == "cameras") {      LOG(INFO) << "Camera blocks for inner iterations";      options->inner_iteration_ordering.reset(new ParameterBlockOrdering);      for (int i = 0; i < num_cameras; ++i) {        options->inner_iteration_ordering->AddElementToGroup(            cameras + camera_block_size * i, 0);      }    } else if (CERES_GET_FLAG(FLAGS_blocks_for_inner_iterations) == "points") {      LOG(INFO) << "Point blocks for inner iterations";      options->inner_iteration_ordering.reset(new ParameterBlockOrdering);      for (int i = 0; i < num_points; ++i) {        options->inner_iteration_ordering->AddElementToGroup(            points + point_block_size * i, 0);      }    } else if (CERES_GET_FLAG(FLAGS_blocks_for_inner_iterations) ==               "cameras,points") {      LOG(INFO) << "Camera followed by point blocks for inner iterations";      options->inner_iteration_ordering.reset(new ParameterBlockOrdering);      for (int i = 0; i < num_cameras; ++i) {        options->inner_iteration_ordering->AddElementToGroup(            cameras + camera_block_size * i, 0);      }      for (int i = 0; i < num_points; ++i) {        options->inner_iteration_ordering->AddElementToGroup(            points + point_block_size * i, 1);      }    } else if (CERES_GET_FLAG(FLAGS_blocks_for_inner_iterations) ==               "points,cameras") {      LOG(INFO) << "Point followed by camera blocks for inner iterations";      options->inner_iteration_ordering.reset(new ParameterBlockOrdering);      for (int i = 0; i < num_cameras; ++i) {        options->inner_iteration_ordering->AddElementToGroup(            cameras + camera_block_size * i, 1);      }      for (int i = 0; i < num_points; ++i) {        options->inner_iteration_ordering->AddElementToGroup(            points + point_block_size * i, 0);      }    } else if (CERES_GET_FLAG(FLAGS_blocks_for_inner_iterations) ==               "automatic") {      LOG(INFO) << "Choosing automatic blocks for inner iterations";    } else {      LOG(FATAL) << "Unknown block type for inner iterations: "                 << CERES_GET_FLAG(FLAGS_blocks_for_inner_iterations);    }  }  // Bundle adjustment problems have a sparsity structure that makes  // them amenable to more specialized and much more efficient  // solution strategies. The SPARSE_SCHUR, DENSE_SCHUR and  // ITERATIVE_SCHUR solvers make use of this specialized  // structure.  //  // This can either be done by specifying Options::ordering_type =  // ceres::SCHUR, in which case Ceres will automatically determine  // the right ParameterBlock ordering, or by manually specifying a  // suitable ordering vector and defining  // Options::num_eliminate_blocks.  if (CERES_GET_FLAG(FLAGS_ordering) == "automatic") {    return;  }  ceres::ParameterBlockOrdering* ordering = new ceres::ParameterBlockOrdering;  // The points come before the cameras.  for (int i = 0; i < num_points; ++i) {    ordering->AddElementToGroup(points + point_block_size * i, 0);  }  for (int i = 0; i < num_cameras; ++i) {    // When using axis-angle, there is a single parameter block for    // the entire camera.    ordering->AddElementToGroup(cameras + camera_block_size * i, 1);  }  options->linear_solver_ordering.reset(ordering);}void SetMinimizerOptions(Solver::Options* options) {  options->max_num_iterations = CERES_GET_FLAG(FLAGS_num_iterations);  options->minimizer_progress_to_stdout = true;  options->num_threads = CERES_GET_FLAG(FLAGS_num_threads);  options->eta = CERES_GET_FLAG(FLAGS_eta);  options->max_solver_time_in_seconds = CERES_GET_FLAG(FLAGS_max_solver_time);  options->use_nonmonotonic_steps = CERES_GET_FLAG(FLAGS_nonmonotonic_steps);  if (CERES_GET_FLAG(FLAGS_line_search)) {    options->minimizer_type = ceres::LINE_SEARCH;  }  CHECK(StringToTrustRegionStrategyType(      CERES_GET_FLAG(FLAGS_trust_region_strategy),      &options->trust_region_strategy_type));  CHECK(      StringToDoglegType(CERES_GET_FLAG(FLAGS_dogleg), &options->dogleg_type));  options->use_inner_iterations = CERES_GET_FLAG(FLAGS_inner_iterations);}void SetSolverOptionsFromFlags(BALProblem* bal_problem,                               Solver::Options* options) {  SetMinimizerOptions(options);  SetLinearSolver(options);  SetOrdering(bal_problem, options);}void BuildProblem(BALProblem* bal_problem, Problem* problem) {  const int point_block_size = bal_problem->point_block_size();  const int camera_block_size = bal_problem->camera_block_size();  double* points = bal_problem->mutable_points();  double* cameras = bal_problem->mutable_cameras();  // Observations is 2*num_observations long array observations =  // [u_1, u_2, ... , u_n], where each u_i is two dimensional, the x  // and y positions of the observation.  const double* observations = bal_problem->observations();  for (int i = 0; i < bal_problem->num_observations(); ++i) {    CostFunction* cost_function;    // Each Residual block takes a point and a camera as input and    // outputs a 2 dimensional residual.    cost_function = (CERES_GET_FLAG(FLAGS_use_quaternions))                        ? SnavelyReprojectionErrorWithQuaternions::Create(                              observations[2 * i + 0], observations[2 * i + 1])                        : SnavelyReprojectionError::Create(                              observations[2 * i + 0], observations[2 * i + 1]);    // If enabled use Huber's loss function.    LossFunction* loss_function =        CERES_GET_FLAG(FLAGS_robustify) ? new HuberLoss(1.0) : NULL;    // Each observation correponds to a pair of a camera and a point    // which are identified by camera_index()[i] and point_index()[i]    // respectively.    double* camera =        cameras + camera_block_size * bal_problem->camera_index()[i];    double* point = points + point_block_size * bal_problem->point_index()[i];    problem->AddResidualBlock(cost_function, loss_function, camera, point);  }  if (CERES_GET_FLAG(FLAGS_use_quaternions) &&      CERES_GET_FLAG(FLAGS_use_local_parameterization)) {    LocalParameterization* camera_parameterization =        new ProductParameterization(new QuaternionParameterization(),                                    new IdentityParameterization(6));    for (int i = 0; i < bal_problem->num_cameras(); ++i) {      problem->SetParameterization(cameras + camera_block_size * i,                                   camera_parameterization);    }  }}void SolveProblem(const char* filename) {  BALProblem bal_problem(filename, CERES_GET_FLAG(FLAGS_use_quaternions));  if (!CERES_GET_FLAG(FLAGS_initial_ply).empty()) {    bal_problem.WriteToPLYFile(CERES_GET_FLAG(FLAGS_initial_ply));  }  Problem problem;  srand(CERES_GET_FLAG(FLAGS_random_seed));  bal_problem.Normalize();  bal_problem.Perturb(CERES_GET_FLAG(FLAGS_rotation_sigma),                      CERES_GET_FLAG(FLAGS_translation_sigma),                      CERES_GET_FLAG(FLAGS_point_sigma));  BuildProblem(&bal_problem, &problem);  Solver::Options options;  SetSolverOptionsFromFlags(&bal_problem, &options);  options.gradient_tolerance = 1e-16;  options.function_tolerance = 1e-16;  Solver::Summary summary;  Solve(options, &problem, &summary);  std::cout << summary.FullReport() << "\n";  if (!CERES_GET_FLAG(FLAGS_final_ply).empty()) {    bal_problem.WriteToPLYFile(CERES_GET_FLAG(FLAGS_final_ply));  }}}  // namespace}  // namespace examples}  // namespace ceresint main(int argc, char** argv) {  GFLAGS_NAMESPACE::ParseCommandLineFlags(&argc, &argv, true);  google::InitGoogleLogging(argv[0]);  if (CERES_GET_FLAG(FLAGS_input).empty()) {    LOG(ERROR) << "Usage: bundle_adjuster --input=bal_problem";    return 1;  }  CHECK(CERES_GET_FLAG(FLAGS_use_quaternions) ||        !CERES_GET_FLAG(FLAGS_use_local_parameterization))      << "--use_local_parameterization can only be used with "      << "--use_quaternions.";  ceres::examples::SolveProblem(CERES_GET_FLAG(FLAGS_input).c_str());  return 0;}
 |