| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251 | 
							- // Ceres Solver - A fast non-linear least squares minimizer
 
- // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
 
- // http://code.google.com/p/ceres-solver/
 
- //
 
- // Redistribution and use in source and binary forms, with or without
 
- // modification, are permitted provided that the following conditions are met:
 
- //
 
- // * Redistributions of source code must retain the above copyright notice,
 
- //   this list of conditions and the following disclaimer.
 
- // * Redistributions in binary form must reproduce the above copyright notice,
 
- //   this list of conditions and the following disclaimer in the documentation
 
- //   and/or other materials provided with the distribution.
 
- // * Neither the name of Google Inc. nor the names of its contributors may be
 
- //   used to endorse or promote products derived from this software without
 
- //   specific prior written permission.
 
- //
 
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 
- // POSSIBILITY OF SUCH DAMAGE.
 
- //
 
- // Author: sameeragarwal@google.com (Sameer Agarwal)
 
- #include <cmath>
 
- #include "gtest/gtest.h"
 
- #include "ceres/internal/autodiff.h"
 
- #include "ceres/internal/eigen.h"
 
- #include "ceres/local_parameterization.h"
 
- #include "ceres/rotation.h"
 
- namespace ceres {
 
- namespace internal {
 
- TEST(IdentityParameterization, EverythingTest) {
 
-   IdentityParameterization parameterization(3);
 
-   EXPECT_EQ(parameterization.GlobalSize(), 3);
 
-   EXPECT_EQ(parameterization.LocalSize(), 3);
 
-   double x[3] = {1.0, 2.0, 3.0};
 
-   double delta[3] = {0.0, 1.0, 2.0};
 
-   double x_plus_delta[3] = {0.0, 0.0, 0.0};
 
-   parameterization.Plus(x, delta, x_plus_delta);
 
-   EXPECT_EQ(x_plus_delta[0], 1.0);
 
-   EXPECT_EQ(x_plus_delta[1], 3.0);
 
-   EXPECT_EQ(x_plus_delta[2], 5.0);
 
-   double jacobian[9];
 
-   parameterization.ComputeJacobian(x, jacobian);
 
-   int k = 0;
 
-   for (int i = 0; i < 3; ++i) {
 
-     for (int j = 0; j < 3; ++j, ++k) {
 
-       EXPECT_EQ(jacobian[k], (i == j) ? 1.0 : 0.0);
 
-     }
 
-   }
 
- }
 
- TEST(SubsetParameterization, DeathTests) {
 
-   vector<int> constant_parameters;
 
-   EXPECT_DEATH(SubsetParameterization parameterization(1, constant_parameters),
 
-                "at least");
 
-   constant_parameters.push_back(0);
 
-   EXPECT_DEATH(SubsetParameterization parameterization(1, constant_parameters),
 
-                "Number of parameters");
 
-   constant_parameters.push_back(1);
 
-   EXPECT_DEATH(SubsetParameterization parameterization(2, constant_parameters),
 
-                "Number of parameters");
 
-   constant_parameters.push_back(1);
 
-   EXPECT_DEATH(SubsetParameterization parameterization(2, constant_parameters),
 
-                "duplicates");
 
- }
 
- TEST(SubsetParameterization, NormalFunctionTest) {
 
-   double x[4] = {1.0, 2.0, 3.0, 4.0};
 
-   for (int i = 0; i < 4; ++i) {
 
-     vector<int> constant_parameters;
 
-     constant_parameters.push_back(i);
 
-     SubsetParameterization parameterization(4, constant_parameters);
 
-     double delta[3] = {1.0, 2.0, 3.0};
 
-     double x_plus_delta[4] = {0.0, 0.0, 0.0};
 
-     parameterization.Plus(x, delta, x_plus_delta);
 
-     int k = 0;
 
-     for (int j = 0; j < 4; ++j) {
 
-       if (j == i)  {
 
-         EXPECT_EQ(x_plus_delta[j], x[j]);
 
-       } else {
 
-         EXPECT_EQ(x_plus_delta[j], x[j] + delta[k++]);
 
-       }
 
-     }
 
-     double jacobian[4 * 3];
 
-     parameterization.ComputeJacobian(x, jacobian);
 
-     int delta_cursor = 0;
 
-     int jacobian_cursor = 0;
 
-     for (int j = 0; j < 4; ++j) {
 
-       if (j != i) {
 
-         for (int k = 0; k < 3; ++k, jacobian_cursor++) {
 
-           EXPECT_EQ(jacobian[jacobian_cursor], delta_cursor == k ? 1.0 : 0.0);
 
-         }
 
-         ++delta_cursor;
 
-       } else {
 
-         for (int k = 0; k < 3; ++k, jacobian_cursor++) {
 
-           EXPECT_EQ(jacobian[jacobian_cursor], 0.0);
 
-         }
 
-       }
 
-     }
 
-   };
 
- }
 
- // Functor needed to implement automatically differentiated Plus for
 
- // quaternions.
 
- struct QuaternionPlus {
 
-   template<typename T>
 
-   bool operator()(const T* x, const T* delta, T* x_plus_delta) const {
 
-     const T squared_norm_delta =
 
-         delta[0] * delta[0] + delta[1] * delta[1] + delta[2] * delta[2];
 
-     T q_delta[4];
 
-     if (squared_norm_delta > T(0.0)) {
 
-       T norm_delta = sqrt(squared_norm_delta);
 
-       const T sin_delta_by_delta = sin(norm_delta) / norm_delta;
 
-       q_delta[0] = cos(norm_delta);
 
-       q_delta[1] = sin_delta_by_delta * delta[0];
 
-       q_delta[2] = sin_delta_by_delta * delta[1];
 
-       q_delta[3] = sin_delta_by_delta * delta[2];
 
-     } else {
 
-       // We do not just use q_delta = [1,0,0,0] here because that is a
 
-       // constant and when used for automatic differentiation will
 
-       // lead to a zero derivative. Instead we take a first order
 
-       // approximation and evaluate it at zero.
 
-       q_delta[0] = T(1.0);
 
-       q_delta[1] = delta[0];
 
-       q_delta[2] = delta[1];
 
-       q_delta[3] = delta[2];
 
-     }
 
-     QuaternionProduct(q_delta, x, x_plus_delta);
 
-     return true;
 
-   }
 
- };
 
- void QuaternionParameterizationTestHelper(const double* x,
 
-                                           const double* delta,
 
-                                           const double* q_delta) {
 
-   double x_plus_delta_ref[4] = {0.0, 0.0, 0.0, 0.0};
 
-   QuaternionProduct(q_delta, x, x_plus_delta_ref);
 
-   double x_plus_delta[4] = {0.0, 0.0, 0.0, 0.0};
 
-   QuaternionParameterization param;
 
-   param.Plus(x, delta, x_plus_delta);
 
-   for (int i = 0; i < 4; ++i) {
 
-     EXPECT_EQ(x_plus_delta[i], x_plus_delta_ref[i]);
 
-   }
 
-   const double x_plus_delta_norm =
 
-       sqrt(x_plus_delta[0] * x_plus_delta[0] +
 
-            x_plus_delta[1] * x_plus_delta[1] +
 
-            x_plus_delta[2] * x_plus_delta[2] +
 
-            x_plus_delta[3] * x_plus_delta[3]);
 
-   EXPECT_NEAR(x_plus_delta_norm, 1.0, 1e-12);
 
-   double jacobian_ref[12];
 
-   double zero_delta[3] = {0.0, 0.0, 0.0};
 
-   const double* parameters[2] = {x, zero_delta};
 
-   double* jacobian_array[2] = { NULL, jacobian_ref };
 
-   // Autodiff jacobian at delta_x = 0.
 
-   internal::AutoDiff<QuaternionPlus, double, 4, 3>::Differentiate(
 
-       QuaternionPlus(), parameters, 4, x_plus_delta, jacobian_array);
 
-   double jacobian[12];
 
-   param.ComputeJacobian(x, jacobian);
 
-   for (int i = 0; i < 12; ++i) {
 
-     EXPECT_TRUE(isfinite(jacobian[i]));
 
-     EXPECT_NEAR(jacobian[i], jacobian_ref[i], 1e-12)
 
-         << "Jacobian mismatch: i = " << i
 
-         << "\n Expected \n" << ConstMatrixRef(jacobian_ref, 4, 3)
 
-         << "\n Actual \n" << ConstMatrixRef(jacobian, 4, 3);
 
-   }
 
- }
 
- TEST(QuaternionParameterization, ZeroTest) {
 
-   double x[4] = {0.5, 0.5, 0.5, 0.5};
 
-   double delta[3] = {0.0, 0.0, 0.0};
 
-   double q_delta[4] = {1.0, 0.0, 0.0, 0.0};
 
-   QuaternionParameterizationTestHelper(x, delta, q_delta);
 
- }
 
- TEST(QuaternionParameterization, NearZeroTest) {
 
-   double x[4] = {0.52, 0.25, 0.15, 0.45};
 
-   double norm_x = sqrt(x[0] * x[0] +
 
-                        x[1] * x[1] +
 
-                        x[2] * x[2] +
 
-                        x[3] * x[3]);
 
-   for (int i = 0; i < 4; ++i) {
 
-     x[i] = x[i] / norm_x;
 
-   }
 
-   double delta[3] = {0.24, 0.15, 0.10};
 
-   for (int i = 0; i < 3; ++i) {
 
-     delta[i] = delta[i] * 1e-14;
 
-   }
 
-   double q_delta[4];
 
-   q_delta[0] = 1.0;
 
-   q_delta[1] = delta[0];
 
-   q_delta[2] = delta[1];
 
-   q_delta[3] = delta[2];
 
-   QuaternionParameterizationTestHelper(x, delta, q_delta);
 
- }
 
- TEST(QuaternionParameterization, AwayFromZeroTest) {
 
-   double x[4] = {0.52, 0.25, 0.15, 0.45};
 
-   double norm_x = sqrt(x[0] * x[0] +
 
-                        x[1] * x[1] +
 
-                        x[2] * x[2] +
 
-                        x[3] * x[3]);
 
-   for (int i = 0; i < 4; ++i) {
 
-     x[i] = x[i] / norm_x;
 
-   }
 
-   double delta[3] = {0.24, 0.15, 0.10};
 
-   const double delta_norm = sqrt(delta[0] * delta[0] +
 
-                                  delta[1] * delta[1] +
 
-                                  delta[2] * delta[2]);
 
-   double q_delta[4];
 
-   q_delta[0] = cos(delta_norm);
 
-   q_delta[1] = sin(delta_norm) / delta_norm * delta[0];
 
-   q_delta[2] = sin(delta_norm) / delta_norm * delta[1];
 
-   q_delta[3] = sin(delta_norm) / delta_norm * delta[2];
 
-   QuaternionParameterizationTestHelper(x, delta, q_delta);
 
- }
 
- }  // namespace internal
 
- }  // namespace ceres
 
 
  |