| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553 | 
							- // Ceres Solver - A fast non-linear least squares minimizer
 
- // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
 
- // http://code.google.com/p/ceres-solver/
 
- //
 
- // Redistribution and use in source and binary forms, with or without
 
- // modification, are permitted provided that the following conditions are met:
 
- //
 
- // * Redistributions of source code must retain the above copyright notice,
 
- //   this list of conditions and the following disclaimer.
 
- // * Redistributions in binary form must reproduce the above copyright notice,
 
- //   this list of conditions and the following disclaimer in the documentation
 
- //   and/or other materials provided with the distribution.
 
- // * Neither the name of Google Inc. nor the names of its contributors may be
 
- //   used to endorse or promote products derived from this software without
 
- //   specific prior written permission.
 
- //
 
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 
- // POSSIBILITY OF SUCH DAMAGE.
 
- //
 
- // Author: sameeragarwal@google.com (Sameer Agarwal)
 
- #include "ceres/compressed_row_sparse_matrix.h"
 
- #include <numeric>
 
- #include "ceres/casts.h"
 
- #include "ceres/crs_matrix.h"
 
- #include "ceres/cxsparse.h"
 
- #include "ceres/internal/eigen.h"
 
- #include "ceres/internal/scoped_ptr.h"
 
- #include "ceres/linear_least_squares_problems.h"
 
- #include "ceres/random.h"
 
- #include "ceres/triplet_sparse_matrix.h"
 
- #include "glog/logging.h"
 
- #include "gtest/gtest.h"
 
- namespace ceres {
 
- namespace internal {
 
- void CompareMatrices(const SparseMatrix* a, const SparseMatrix* b) {
 
-   EXPECT_EQ(a->num_rows(), b->num_rows());
 
-   EXPECT_EQ(a->num_cols(), b->num_cols());
 
-   int num_rows = a->num_rows();
 
-   int num_cols = a->num_cols();
 
-   for (int i = 0; i < num_cols; ++i) {
 
-     Vector x = Vector::Zero(num_cols);
 
-     x(i) = 1.0;
 
-     Vector y_a = Vector::Zero(num_rows);
 
-     Vector y_b = Vector::Zero(num_rows);
 
-     a->RightMultiply(x.data(), y_a.data());
 
-     b->RightMultiply(x.data(), y_b.data());
 
-     EXPECT_EQ((y_a - y_b).norm(), 0);
 
-   }
 
- }
 
- class CompressedRowSparseMatrixTest : public ::testing::Test {
 
-  protected :
 
-   virtual void SetUp() {
 
-     scoped_ptr<LinearLeastSquaresProblem> problem(
 
-         CreateLinearLeastSquaresProblemFromId(1));
 
-     CHECK_NOTNULL(problem.get());
 
-     tsm.reset(down_cast<TripletSparseMatrix*>(problem->A.release()));
 
-     crsm.reset(new CompressedRowSparseMatrix(*tsm));
 
-     num_rows = tsm->num_rows();
 
-     num_cols = tsm->num_cols();
 
-     vector<int>* row_blocks = crsm->mutable_row_blocks();
 
-     row_blocks->resize(num_rows);
 
-     std::fill(row_blocks->begin(), row_blocks->end(), 1);
 
-     vector<int>* col_blocks = crsm->mutable_col_blocks();
 
-     col_blocks->resize(num_cols);
 
-     std::fill(col_blocks->begin(), col_blocks->end(), 1);
 
-   }
 
-   int num_rows;
 
-   int num_cols;
 
-   scoped_ptr<TripletSparseMatrix> tsm;
 
-   scoped_ptr<CompressedRowSparseMatrix> crsm;
 
- };
 
- TEST_F(CompressedRowSparseMatrixTest, RightMultiply) {
 
-   CompareMatrices(tsm.get(), crsm.get());
 
- }
 
- TEST_F(CompressedRowSparseMatrixTest, LeftMultiply) {
 
-   for (int i = 0; i < num_rows; ++i) {
 
-     Vector a = Vector::Zero(num_rows);
 
-     a(i) = 1.0;
 
-     Vector b1 = Vector::Zero(num_cols);
 
-     Vector b2 = Vector::Zero(num_cols);
 
-     tsm->LeftMultiply(a.data(), b1.data());
 
-     crsm->LeftMultiply(a.data(), b2.data());
 
-     EXPECT_EQ((b1 - b2).norm(), 0);
 
-   }
 
- }
 
- TEST_F(CompressedRowSparseMatrixTest, ColumnNorm) {
 
-   Vector b1 = Vector::Zero(num_cols);
 
-   Vector b2 = Vector::Zero(num_cols);
 
-   tsm->SquaredColumnNorm(b1.data());
 
-   crsm->SquaredColumnNorm(b2.data());
 
-   EXPECT_EQ((b1 - b2).norm(), 0);
 
- }
 
- TEST_F(CompressedRowSparseMatrixTest, Scale) {
 
-   Vector scale(num_cols);
 
-   for (int i = 0; i < num_cols; ++i) {
 
-     scale(i) = i + 1;
 
-   }
 
-   tsm->ScaleColumns(scale.data());
 
-   crsm->ScaleColumns(scale.data());
 
-   CompareMatrices(tsm.get(), crsm.get());
 
- }
 
- TEST_F(CompressedRowSparseMatrixTest, DeleteRows) {
 
-   // Clear the row and column blocks as these are purely scalar tests.
 
-   crsm->mutable_row_blocks()->clear();
 
-   crsm->mutable_col_blocks()->clear();
 
-   for (int i = 0; i < num_rows; ++i) {
 
-     tsm->Resize(num_rows - i, num_cols);
 
-     crsm->DeleteRows(crsm->num_rows() - tsm->num_rows());
 
-     CompareMatrices(tsm.get(), crsm.get());
 
-   }
 
- }
 
- TEST_F(CompressedRowSparseMatrixTest, AppendRows) {
 
-   // Clear the row and column blocks as these are purely scalar tests.
 
-   crsm->mutable_row_blocks()->clear();
 
-   crsm->mutable_col_blocks()->clear();
 
-   for (int i = 0; i < num_rows; ++i) {
 
-     TripletSparseMatrix tsm_appendage(*tsm);
 
-     tsm_appendage.Resize(i, num_cols);
 
-     tsm->AppendRows(tsm_appendage);
 
-     CompressedRowSparseMatrix crsm_appendage(tsm_appendage);
 
-     crsm->AppendRows(crsm_appendage);
 
-     CompareMatrices(tsm.get(), crsm.get());
 
-   }
 
- }
 
- TEST_F(CompressedRowSparseMatrixTest, AppendAndDeleteBlockDiagonalMatrix) {
 
-   int num_diagonal_rows = crsm->num_cols();
 
-   scoped_array<double> diagonal(new double[num_diagonal_rows]);
 
-   for (int i = 0; i < num_diagonal_rows; ++i) {
 
-     diagonal[i] =i;
 
-   }
 
-   vector<int> row_and_column_blocks;
 
-   row_and_column_blocks.push_back(1);
 
-   row_and_column_blocks.push_back(2);
 
-   row_and_column_blocks.push_back(2);
 
-   const vector<int> pre_row_blocks = crsm->row_blocks();
 
-   const vector<int> pre_col_blocks = crsm->col_blocks();
 
-   scoped_ptr<CompressedRowSparseMatrix> appendage(
 
-       CompressedRowSparseMatrix::CreateBlockDiagonalMatrix(
 
-           diagonal.get(), row_and_column_blocks));
 
-   LOG(INFO) << appendage->row_blocks().size();
 
-   crsm->AppendRows(*appendage);
 
-   const vector<int> post_row_blocks = crsm->row_blocks();
 
-   const vector<int> post_col_blocks = crsm->col_blocks();
 
-   vector<int> expected_row_blocks = pre_row_blocks;
 
-   expected_row_blocks.insert(expected_row_blocks.end(),
 
-                              row_and_column_blocks.begin(),
 
-                              row_and_column_blocks.end());
 
-   vector<int> expected_col_blocks = pre_col_blocks;
 
-   EXPECT_EQ(expected_row_blocks, crsm->row_blocks());
 
-   EXPECT_EQ(expected_col_blocks, crsm->col_blocks());
 
-   crsm->DeleteRows(num_diagonal_rows);
 
-   EXPECT_EQ(crsm->row_blocks(), pre_row_blocks);
 
-   EXPECT_EQ(crsm->col_blocks(), pre_col_blocks);
 
- }
 
- TEST_F(CompressedRowSparseMatrixTest, ToDenseMatrix) {
 
-   Matrix tsm_dense;
 
-   Matrix crsm_dense;
 
-   tsm->ToDenseMatrix(&tsm_dense);
 
-   crsm->ToDenseMatrix(&crsm_dense);
 
-   EXPECT_EQ((tsm_dense - crsm_dense).norm(), 0.0);
 
- }
 
- TEST_F(CompressedRowSparseMatrixTest, ToCRSMatrix) {
 
-   CRSMatrix crs_matrix;
 
-   crsm->ToCRSMatrix(&crs_matrix);
 
-   EXPECT_EQ(crsm->num_rows(), crs_matrix.num_rows);
 
-   EXPECT_EQ(crsm->num_cols(), crs_matrix.num_cols);
 
-   EXPECT_EQ(crsm->num_rows() + 1, crs_matrix.rows.size());
 
-   EXPECT_EQ(crsm->num_nonzeros(), crs_matrix.cols.size());
 
-   EXPECT_EQ(crsm->num_nonzeros(), crs_matrix.values.size());
 
-   for (int i = 0; i < crsm->num_rows() + 1; ++i) {
 
-     EXPECT_EQ(crsm->rows()[i], crs_matrix.rows[i]);
 
-   }
 
-   for (int i = 0; i < crsm->num_nonzeros(); ++i) {
 
-     EXPECT_EQ(crsm->cols()[i], crs_matrix.cols[i]);
 
-     EXPECT_EQ(crsm->values()[i], crs_matrix.values[i]);
 
-   }
 
- }
 
- TEST(CompressedRowSparseMatrix, CreateBlockDiagonalMatrix) {
 
-   vector<int> blocks;
 
-   blocks.push_back(1);
 
-   blocks.push_back(2);
 
-   blocks.push_back(2);
 
-   Vector diagonal(5);
 
-   for (int i = 0; i < 5; ++i) {
 
-     diagonal(i) = i + 1;
 
-   }
 
-   scoped_ptr<CompressedRowSparseMatrix> matrix(
 
-       CompressedRowSparseMatrix::CreateBlockDiagonalMatrix(
 
-           diagonal.data(), blocks));
 
-   EXPECT_EQ(matrix->num_rows(), 5);
 
-   EXPECT_EQ(matrix->num_cols(), 5);
 
-   EXPECT_EQ(matrix->num_nonzeros(), 9);
 
-   EXPECT_EQ(blocks, matrix->row_blocks());
 
-   EXPECT_EQ(blocks, matrix->col_blocks());
 
-   Vector x(5);
 
-   Vector y(5);
 
-   x.setOnes();
 
-   y.setZero();
 
-   matrix->RightMultiply(x.data(), y.data());
 
-   for (int i = 0; i < diagonal.size(); ++i) {
 
-     EXPECT_EQ(y[i], diagonal[i]);
 
-   }
 
-   y.setZero();
 
-   matrix->LeftMultiply(x.data(), y.data());
 
-   for (int i = 0; i < diagonal.size(); ++i) {
 
-     EXPECT_EQ(y[i], diagonal[i]);
 
-   }
 
-   Matrix dense;
 
-   matrix->ToDenseMatrix(&dense);
 
-   EXPECT_EQ((dense.diagonal() - diagonal).norm(), 0.0);
 
- }
 
- class SolveLowerTriangularTest : public ::testing::Test {
 
-  protected:
 
-   void SetUp() {
 
-     matrix_.reset(new CompressedRowSparseMatrix(4, 4, 7));
 
-     int* rows = matrix_->mutable_rows();
 
-     int* cols = matrix_->mutable_cols();
 
-     double* values = matrix_->mutable_values();
 
-     rows[0] = 0;
 
-     cols[0] = 0;
 
-     values[0] = 0.50754;
 
-     rows[1] = 1;
 
-     cols[1] = 1;
 
-     values[1] = 0.80483;
 
-     rows[2] = 2;
 
-     cols[2] = 1;
 
-     values[2] = 0.14120;
 
-     cols[3] = 2;
 
-     values[3] = 0.3;
 
-     rows[3] = 4;
 
-     cols[4] = 0;
 
-     values[4] = 0.77696;
 
-     cols[5] = 1;
 
-     values[5] = 0.41860;
 
-     cols[6] = 3;
 
-     values[6] = 0.88979;
 
-     rows[4] = 7;
 
-   }
 
-   scoped_ptr<CompressedRowSparseMatrix> matrix_;
 
- };
 
- TEST_F(SolveLowerTriangularTest, SolveInPlace) {
 
-   double rhs_and_solution[] = {1.0, 1.0, 2.0, 2.0};
 
-   double expected[] = {1.970288,  1.242498,  6.081864, -0.057255};
 
-   matrix_->SolveLowerTriangularInPlace(rhs_and_solution);
 
-   for (int i = 0; i < 4; ++i) {
 
-     EXPECT_NEAR(rhs_and_solution[i], expected[i], 1e-4) << i;
 
-   }
 
- }
 
- TEST_F(SolveLowerTriangularTest, TransposeSolveInPlace) {
 
-   double rhs_and_solution[] = {1.0, 1.0, 2.0, 2.0};
 
-   const double expected[] = { -1.4706, -1.0962, 6.6667, 2.2477};
 
-   matrix_->SolveLowerTriangularTransposeInPlace(rhs_and_solution);
 
-   for (int i = 0; i < 4; ++i) {
 
-     EXPECT_NEAR(rhs_and_solution[i], expected[i], 1e-4) << i;
 
-   }
 
- }
 
- TEST(CompressedRowSparseMatrix, Transpose) {
 
-   //  0  1  0  2  3  0
 
-   //  4  6  7  0  0  8
 
-   //  9 10  0 11 12  0
 
-   // 13  0 14 15  9  0
 
-   //  0 16 17  0  0  0
 
-   CompressedRowSparseMatrix matrix(5, 6, 30);
 
-   int* rows = matrix.mutable_rows();
 
-   int* cols = matrix.mutable_cols();
 
-   double* values = matrix.mutable_values();
 
-   rows[0] = 0;
 
-   cols[0] = 1;
 
-   cols[1] = 3;
 
-   cols[2] = 4;
 
-   rows[1] = 3;
 
-   cols[3] = 0;
 
-   cols[4] = 1;
 
-   cols[5] = 2;
 
-   cols[6] = 5;
 
-   rows[2] = 7;
 
-   cols[7] = 0;
 
-   cols[8] = 1;
 
-   cols[9] = 3;
 
-   cols[10] = 4;
 
-   rows[3] = 11;
 
-   cols[11] = 0;
 
-   cols[12] = 2;
 
-   cols[13] = 3;
 
-   cols[14] = 4;
 
-   rows[4] = 15;
 
-   cols[15] = 1;
 
-   cols[16] = 2;
 
-   rows[5] = 17;
 
-   copy(values, values + 17, cols);
 
-   scoped_ptr<CompressedRowSparseMatrix> transpose(matrix.Transpose());
 
-   Matrix dense_matrix;
 
-   matrix.ToDenseMatrix(&dense_matrix);
 
-   Matrix dense_transpose;
 
-   transpose->ToDenseMatrix(&dense_transpose);
 
-   EXPECT_NEAR((dense_matrix - dense_transpose.transpose()).norm(), 0.0, 1e-14);
 
- }
 
- #ifndef CERES_NO_CXSPARSE
 
- struct RandomMatrixOptions {
 
-   int num_row_blocks;
 
-   int min_row_block_size;
 
-   int max_row_block_size;
 
-   int num_col_blocks;
 
-   int min_col_block_size;
 
-   int max_col_block_size;
 
-   double block_density;
 
- };
 
- CompressedRowSparseMatrix* CreateRandomCompressedRowSparseMatrix(
 
-     const RandomMatrixOptions& options) {
 
-   vector<int> row_blocks;
 
-   for (int i = 0; i < options.num_row_blocks; ++i) {
 
-     const int delta_block_size =
 
-         Uniform(options.max_row_block_size - options.min_row_block_size);
 
-     row_blocks.push_back(options.min_row_block_size + delta_block_size);
 
-   }
 
-   vector<int> col_blocks;
 
-   for (int i = 0; i < options.num_col_blocks; ++i) {
 
-     const int delta_block_size =
 
-         Uniform(options.max_col_block_size - options.min_col_block_size);
 
-     col_blocks.push_back(options.min_col_block_size + delta_block_size);
 
-   }
 
-   vector<int> rows;
 
-   vector<int> cols;
 
-   vector<double> values;
 
-   while (values.size() == 0) {
 
-     int row_block_begin = 0;
 
-     for (int r = 0; r < options.num_row_blocks; ++r) {
 
-       int col_block_begin = 0;
 
-       for (int c = 0; c < options.num_col_blocks; ++c) {
 
-         if (RandDouble() <= options.block_density) {
 
-           for (int i = 0; i < row_blocks[r]; ++i) {
 
-             for (int j = 0; j < col_blocks[c]; ++j) {
 
-               rows.push_back(row_block_begin + i);
 
-               cols.push_back(col_block_begin + j);
 
-               values.push_back(RandNormal());
 
-             }
 
-           }
 
-         }
 
-         col_block_begin += col_blocks[c];
 
-       }
 
-       row_block_begin += row_blocks[r];
 
-     }
 
-   }
 
-   const int num_rows = std::accumulate(row_blocks.begin(), row_blocks.end(), 0);
 
-   const int num_cols = std::accumulate(col_blocks.begin(), col_blocks.end(), 0);
 
-   const int num_nonzeros = values.size();
 
-   TripletSparseMatrix tsm(num_rows, num_cols, num_nonzeros);
 
-   std::copy(rows.begin(), rows.end(), tsm.mutable_rows());
 
-   std::copy(cols.begin(), cols.end(), tsm.mutable_cols());
 
-   std::copy(values.begin(), values.end(), tsm.mutable_values());
 
-   tsm.set_num_nonzeros(num_nonzeros);
 
-   CompressedRowSparseMatrix* matrix = new CompressedRowSparseMatrix(tsm);
 
-   (*matrix->mutable_row_blocks())  = row_blocks;
 
-   (*matrix->mutable_col_blocks())  = col_blocks;
 
-   return matrix;
 
- }
 
- void ToDenseMatrix(const cs_di* matrix, Matrix* dense_matrix) {
 
-   dense_matrix->resize(matrix->m, matrix->n);
 
-   dense_matrix->setZero();
 
-   for (int c = 0; c < matrix->n; ++c) {
 
-    for (int idx = matrix->p[c]; idx < matrix->p[c + 1]; ++idx) {
 
-      const int r = matrix->i[idx];
 
-      (*dense_matrix)(r, c) = matrix->x[idx];
 
-    }
 
-  }
 
- }
 
- TEST(CompressedRowSparseMatrix, ComputeOuterProduct) {
 
-   // "Randomly generated seed."
 
-   SetRandomState(29823);
 
-   int kMaxNumRowBlocks = 10;
 
-   int kMaxNumColBlocks = 10;
 
-   int kNumTrials = 10;
 
-   CXSparse cxsparse;
 
-   const double kTolerance = 1e-18;
 
-   // Create a random matrix, compute its outer product using CXSParse
 
-   // and ComputeOuterProduct. Convert both matrices to dense matrices
 
-   // and compare their upper triangular parts. They should be within
 
-   // kTolerance of each other.
 
-   for (int num_row_blocks = 1;
 
-        num_row_blocks < kMaxNumRowBlocks;
 
-        ++num_row_blocks) {
 
-     for (int num_col_blocks = 1;
 
-          num_col_blocks < kMaxNumColBlocks;
 
-          ++num_col_blocks) {
 
-       for (int trial = 0; trial < kNumTrials; ++trial) {
 
-         RandomMatrixOptions options;
 
-         options.num_row_blocks = num_row_blocks;
 
-         options.num_col_blocks = num_col_blocks;
 
-         options.min_row_block_size = 1;
 
-         options.max_row_block_size = 5;
 
-         options.min_col_block_size = 1;
 
-         options.max_col_block_size = 10;
 
-         options.block_density = std::max(0.1, RandDouble());
 
-         VLOG(2) << "num row blocks: " << options.num_row_blocks;
 
-         VLOG(2) << "num col blocks: " << options.num_col_blocks;
 
-         VLOG(2) << "min row block size: " << options.min_row_block_size;
 
-         VLOG(2) << "max row block size: " << options.max_row_block_size;
 
-         VLOG(2) << "min col block size: " << options.min_col_block_size;
 
-         VLOG(2) << "max col block size: " << options.max_col_block_size;
 
-         VLOG(2) << "block density: " << options.block_density;
 
-         scoped_ptr<CompressedRowSparseMatrix> matrix(
 
-             CreateRandomCompressedRowSparseMatrix(options));
 
-         cs_di cs_matrix_transpose = cxsparse.CreateSparseMatrixTransposeView(matrix.get());
 
-         cs_di* cs_matrix = cxsparse.TransposeMatrix(&cs_matrix_transpose);
 
-         cs_di* expected_outer_product =
 
-             cxsparse.MatrixMatrixMultiply(&cs_matrix_transpose, cs_matrix);
 
-         vector<int> program;
 
-         scoped_ptr<CompressedRowSparseMatrix> outer_product(
 
-             CompressedRowSparseMatrix::CreateOuterProductMatrixAndProgram(
 
-                 *matrix, &program));
 
-         CompressedRowSparseMatrix::ComputeOuterProduct(*matrix,
 
-                                                        program,
 
-                                                        outer_product.get());
 
-         cs_di actual_outer_product =
 
-             cxsparse.CreateSparseMatrixTransposeView(outer_product.get());
 
-         ASSERT_EQ(actual_outer_product.m, actual_outer_product.n);
 
-         ASSERT_EQ(expected_outer_product->m, expected_outer_product->n);
 
-         ASSERT_EQ(actual_outer_product.m, expected_outer_product->m);
 
-         Matrix actual_matrix;
 
-         Matrix expected_matrix;
 
-         ToDenseMatrix(expected_outer_product, &expected_matrix);
 
-         expected_matrix.triangularView<Eigen::StrictlyLower>().setZero();
 
-         ToDenseMatrix(&actual_outer_product, &actual_matrix);
 
-         const double diff_norm = (actual_matrix - expected_matrix).norm() / expected_matrix.norm();
 
-         ASSERT_NEAR(diff_norm, 0.0, kTolerance)
 
-             << "expected: \n"
 
-             << expected_matrix
 
-             << "\nactual: \n"
 
-             << actual_matrix;
 
-         cxsparse.Free(cs_matrix);
 
-         cxsparse.Free(expected_outer_product);
 
-       }
 
-     }
 
-   }
 
- }
 
- #endif  // CERES_NO_CXSPARSE
 
- }  // namespace internal
 
- }  // namespace ceres
 
 
  |