| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.// http://code.google.com/p/ceres-solver///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: sameeragarwal@google.com (Sameer Agarwal)#include <cmath>#include "gtest/gtest.h"#include "ceres/fpclassify.h"#include "ceres/internal/autodiff.h"#include "ceres/internal/eigen.h"#include "ceres/local_parameterization.h"#include "ceres/rotation.h"namespace ceres {namespace internal {TEST(IdentityParameterization, EverythingTest) {  IdentityParameterization parameterization(3);  EXPECT_EQ(parameterization.GlobalSize(), 3);  EXPECT_EQ(parameterization.LocalSize(), 3);  double x[3] = {1.0, 2.0, 3.0};  double delta[3] = {0.0, 1.0, 2.0};  double x_plus_delta[3] = {0.0, 0.0, 0.0};  parameterization.Plus(x, delta, x_plus_delta);  EXPECT_EQ(x_plus_delta[0], 1.0);  EXPECT_EQ(x_plus_delta[1], 3.0);  EXPECT_EQ(x_plus_delta[2], 5.0);  double jacobian[9];  parameterization.ComputeJacobian(x, jacobian);  int k = 0;  for (int i = 0; i < 3; ++i) {    for (int j = 0; j < 3; ++j, ++k) {      EXPECT_EQ(jacobian[k], (i == j) ? 1.0 : 0.0);    }  }}// Death tests are not working on Windows yet.// TODO(keir): Figure out how to enable these.#ifndef _WIN32TEST(SubsetParameterization, DeathTests) {  vector<int> constant_parameters;  EXPECT_DEATH(SubsetParameterization parameterization(1, constant_parameters),               "at least");  constant_parameters.push_back(0);  EXPECT_DEATH(SubsetParameterization parameterization(1, constant_parameters),               "Number of parameters");  constant_parameters.push_back(1);  EXPECT_DEATH(SubsetParameterization parameterization(2, constant_parameters),               "Number of parameters");  constant_parameters.push_back(1);  EXPECT_DEATH(SubsetParameterization parameterization(2, constant_parameters),               "duplicates");}#endif  // _WIN32TEST(SubsetParameterization, NormalFunctionTest) {  double x[4] = {1.0, 2.0, 3.0, 4.0};  for (int i = 0; i < 4; ++i) {    vector<int> constant_parameters;    constant_parameters.push_back(i);    SubsetParameterization parameterization(4, constant_parameters);    double delta[3] = {1.0, 2.0, 3.0};    double x_plus_delta[4] = {0.0, 0.0, 0.0};    parameterization.Plus(x, delta, x_plus_delta);    int k = 0;    for (int j = 0; j < 4; ++j) {      if (j == i)  {        EXPECT_EQ(x_plus_delta[j], x[j]);      } else {        EXPECT_EQ(x_plus_delta[j], x[j] + delta[k++]);      }    }    double jacobian[4 * 3];    parameterization.ComputeJacobian(x, jacobian);    int delta_cursor = 0;    int jacobian_cursor = 0;    for (int j = 0; j < 4; ++j) {      if (j != i) {        for (int k = 0; k < 3; ++k, jacobian_cursor++) {          EXPECT_EQ(jacobian[jacobian_cursor], delta_cursor == k ? 1.0 : 0.0);        }        ++delta_cursor;      } else {        for (int k = 0; k < 3; ++k, jacobian_cursor++) {          EXPECT_EQ(jacobian[jacobian_cursor], 0.0);        }      }    }  };}// Functor needed to implement automatically differentiated Plus for// quaternions.struct QuaternionPlus {  template<typename T>  bool operator()(const T* x, const T* delta, T* x_plus_delta) const {    const T squared_norm_delta =        delta[0] * delta[0] + delta[1] * delta[1] + delta[2] * delta[2];    T q_delta[4];    if (squared_norm_delta > T(0.0)) {      T norm_delta = sqrt(squared_norm_delta);      const T sin_delta_by_delta = sin(norm_delta) / norm_delta;      q_delta[0] = cos(norm_delta);      q_delta[1] = sin_delta_by_delta * delta[0];      q_delta[2] = sin_delta_by_delta * delta[1];      q_delta[3] = sin_delta_by_delta * delta[2];    } else {      // We do not just use q_delta = [1,0,0,0] here because that is a      // constant and when used for automatic differentiation will      // lead to a zero derivative. Instead we take a first order      // approximation and evaluate it at zero.      q_delta[0] = T(1.0);      q_delta[1] = delta[0];      q_delta[2] = delta[1];      q_delta[3] = delta[2];    }    QuaternionProduct(q_delta, x, x_plus_delta);    return true;  }};void QuaternionParameterizationTestHelper(const double* x,                                          const double* delta,                                          const double* q_delta) {  const double kTolerance = 1e-14;  double x_plus_delta_ref[4] = {0.0, 0.0, 0.0, 0.0};  QuaternionProduct(q_delta, x, x_plus_delta_ref);  double x_plus_delta[4] = {0.0, 0.0, 0.0, 0.0};  QuaternionParameterization param;  param.Plus(x, delta, x_plus_delta);  for (int i = 0; i < 4; ++i) {    EXPECT_NEAR(x_plus_delta[i], x_plus_delta_ref[i], kTolerance);  }  const double x_plus_delta_norm =      sqrt(x_plus_delta[0] * x_plus_delta[0] +           x_plus_delta[1] * x_plus_delta[1] +           x_plus_delta[2] * x_plus_delta[2] +           x_plus_delta[3] * x_plus_delta[3]);  EXPECT_NEAR(x_plus_delta_norm, 1.0, kTolerance);  double jacobian_ref[12];  double zero_delta[3] = {0.0, 0.0, 0.0};  const double* parameters[2] = {x, zero_delta};  double* jacobian_array[2] = { NULL, jacobian_ref };  // Autodiff jacobian at delta_x = 0.  internal::AutoDiff<QuaternionPlus, double, 4, 3>::Differentiate(      QuaternionPlus(), parameters, 4, x_plus_delta, jacobian_array);  double jacobian[12];  param.ComputeJacobian(x, jacobian);  for (int i = 0; i < 12; ++i) {    EXPECT_TRUE(IsFinite(jacobian[i]));    EXPECT_NEAR(jacobian[i], jacobian_ref[i], kTolerance)        << "Jacobian mismatch: i = " << i        << "\n Expected \n" << ConstMatrixRef(jacobian_ref, 4, 3)        << "\n Actual \n" << ConstMatrixRef(jacobian, 4, 3);  }}TEST(QuaternionParameterization, ZeroTest) {  double x[4] = {0.5, 0.5, 0.5, 0.5};  double delta[3] = {0.0, 0.0, 0.0};  double q_delta[4] = {1.0, 0.0, 0.0, 0.0};  QuaternionParameterizationTestHelper(x, delta, q_delta);}TEST(QuaternionParameterization, NearZeroTest) {  double x[4] = {0.52, 0.25, 0.15, 0.45};  double norm_x = sqrt(x[0] * x[0] +                       x[1] * x[1] +                       x[2] * x[2] +                       x[3] * x[3]);  for (int i = 0; i < 4; ++i) {    x[i] = x[i] / norm_x;  }  double delta[3] = {0.24, 0.15, 0.10};  for (int i = 0; i < 3; ++i) {    delta[i] = delta[i] * 1e-14;  }  double q_delta[4];  q_delta[0] = 1.0;  q_delta[1] = delta[0];  q_delta[2] = delta[1];  q_delta[3] = delta[2];  QuaternionParameterizationTestHelper(x, delta, q_delta);}TEST(QuaternionParameterization, AwayFromZeroTest) {  double x[4] = {0.52, 0.25, 0.15, 0.45};  double norm_x = sqrt(x[0] * x[0] +                       x[1] * x[1] +                       x[2] * x[2] +                       x[3] * x[3]);  for (int i = 0; i < 4; ++i) {    x[i] = x[i] / norm_x;  }  double delta[3] = {0.24, 0.15, 0.10};  const double delta_norm = sqrt(delta[0] * delta[0] +                                 delta[1] * delta[1] +                                 delta[2] * delta[2]);  double q_delta[4];  q_delta[0] = cos(delta_norm);  q_delta[1] = sin(delta_norm) / delta_norm * delta[0];  q_delta[2] = sin(delta_norm) / delta_norm * delta[1];  q_delta[3] = sin(delta_norm) / delta_norm * delta[2];  QuaternionParameterizationTestHelper(x, delta, q_delta);}}  // namespace internal}  // namespace ceres
 |