| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144 | 
							- // Ceres Solver - A fast non-linear least squares minimizer
 
- // Copyright 2013 Google Inc. All rights reserved.
 
- // http://code.google.com/p/ceres-solver/
 
- //
 
- // Redistribution and use in source and binary forms, with or without
 
- // modification, are permitted provided that the following conditions are met:
 
- //
 
- // * Redistributions of source code must retain the above copyright notice,
 
- //   this list of conditions and the following disclaimer.
 
- // * Redistributions in binary form must reproduce the above copyright notice,
 
- //   this list of conditions and the following disclaimer in the documentation
 
- //   and/or other materials provided with the distribution.
 
- // * Neither the name of Google Inc. nor the names of its contributors may be
 
- //   used to endorse or promote products derived from this software without
 
- //   specific prior written permission.
 
- //
 
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 
- // POSSIBILITY OF SUCH DAMAGE.
 
- //
 
- // Author: sergey.vfx@gmail.com (Sergey Sharybin)
 
- //         mierle@gmail.com (Keir Mierle)
 
- //         sameeragarwal@google.com (Sameer Agarwal)
 
- #ifndef CERES_PUBLIC_AUTODIFF_LOCAL_PARAMETERIZATION_H_
 
- #define CERES_PUBLIC_AUTODIFF_LOCAL_PARAMETERIZATION_H_
 
- #include "ceres/internal/autodiff.h"
 
- #include "ceres/internal/scoped_ptr.h"
 
- #include "ceres/local_parameterization.h"
 
- namespace ceres {
 
- // Create local parameterization with Jacobians computed via automatic
 
- // differentiation. For more information on local parameterizations,
 
- // see include/ceres/local_parameterization.h
 
- //
 
- // To get an auto differentiated local parameterization, you must define
 
- // a class with a templated operator() (a functor) that computes
 
- //
 
- //   x_plus_delta = Plus(x, delta);
 
- //
 
- // the template parameter T. The autodiff framework substitutes appropriate
 
- // "Jet" objects for T in order to compute the derivative when necessary, but
 
- // this is hidden, and you should write the function as if T were a scalar type
 
- // (e.g. a double-precision floating point number).
 
- //
 
- // The function must write the computed value in the last argument (the only
 
- // non-const one) and return true to indicate success.
 
- //
 
- // For example, Quaternions have a three dimensional local
 
- // parameterization. It's plus operation can be implemented as (taken
 
- // from interncal/ceres/auto_diff_local_parameterization_test.cc)
 
- //
 
- //   struct QuaternionPlus {
 
- //     template<typename T>
 
- //     bool operator()(const T* x, const T* delta, T* x_plus_delta) const {
 
- //       const T squared_norm_delta =
 
- //           delta[0] * delta[0] + delta[1] * delta[1] + delta[2] * delta[2];
 
- //
 
- //       T q_delta[4];
 
- //       if (squared_norm_delta > T(0.0)) {
 
- //         T norm_delta = sqrt(squared_norm_delta);
 
- //         const T sin_delta_by_delta = sin(norm_delta) / norm_delta;
 
- //         q_delta[0] = cos(norm_delta);
 
- //         q_delta[1] = sin_delta_by_delta * delta[0];
 
- //         q_delta[2] = sin_delta_by_delta * delta[1];
 
- //         q_delta[3] = sin_delta_by_delta * delta[2];
 
- //       } else {
 
- //         // We do not just use q_delta = [1,0,0,0] here because that is a
 
- //         // constant and when used for automatic differentiation will
 
- //         // lead to a zero derivative. Instead we take a first order
 
- //         // approximation and evaluate it at zero.
 
- //         q_delta[0] = T(1.0);
 
- //         q_delta[1] = delta[0];
 
- //         q_delta[2] = delta[1];
 
- //         q_delta[3] = delta[2];
 
- //       }
 
- //
 
- //       QuaternionProduct(q_delta, x, x_plus_delta);
 
- //       return true;
 
- //     }
 
- //   };
 
- //
 
- // Then given this struct, the auto differentiated local
 
- // parameterization can now be constructed as
 
- //
 
- //   LocalParameterization* local_parameterization =
 
- //     new AutoDiffLocalParameterization<QuaternionPlus, 4, 3>;
 
- //                                                       |  |
 
- //                            Global Size ---------------+  |
 
- //                            Local Size -------------------+
 
- //
 
- // WARNING: Since the functor will get instantiated with different types for
 
- // T, you must to convert from other numeric types to T before mixing
 
- // computations with other variables of type T. In the example above, this is
 
- // seen where instead of using k_ directly, k_ is wrapped with T(k_).
 
- template <typename Functor, int kGlobalSize, int kLocalSize>
 
- class AutoDiffLocalParameterization : public LocalParameterization {
 
-  public:
 
-   virtual ~AutoDiffLocalParameterization() {}
 
-   virtual bool Plus(const double* x,
 
-                     const double* delta,
 
-                     double* x_plus_delta) const {
 
-     return Functor()(x, delta, x_plus_delta);
 
-   }
 
-   virtual bool ComputeJacobian(const double* x, double* jacobian) const {
 
-     double zero_delta[kLocalSize];
 
-     for (int i = 0; i < kLocalSize; ++i) {
 
-       zero_delta[i] = 0.0;
 
-     }
 
-     double x_plus_delta[kGlobalSize];
 
-     for (int i = 0; i < kGlobalSize; ++i) {
 
-       x_plus_delta[i] = 0.0;
 
-     }
 
-     const double* parameter_ptrs[2] = {x, zero_delta};
 
-     double* jacobian_ptrs[2] = { NULL, jacobian };
 
-     return internal::AutoDiff<Functor, double, kGlobalSize, kLocalSize>
 
-         ::Differentiate(Functor(),
 
-                         parameter_ptrs,
 
-                         kGlobalSize,
 
-                         x_plus_delta,
 
-                         jacobian_ptrs);
 
-   }
 
-   virtual int GlobalSize() const { return kGlobalSize; }
 
-   virtual int LocalSize() const { return kLocalSize; }
 
- };
 
- }  // namespace ceres
 
- #endif  // CERES_PUBLIC_AUTODIFF_LOCAL_PARAMETERIZATION_H_
 
 
  |