| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316 | 
							- // Ceres Solver - A fast non-linear least squares minimizer
 
- // Copyright 2015 Google Inc. All rights reserved.
 
- // http://ceres-solver.org/
 
- //
 
- // Redistribution and use in source and binary forms, with or without
 
- // modification, are permitted provided that the following conditions are met:
 
- //
 
- // * Redistributions of source code must retain the above copyright notice,
 
- //   this list of conditions and the following disclaimer.
 
- // * Redistributions in binary form must reproduce the above copyright notice,
 
- //   this list of conditions and the following disclaimer in the documentation
 
- //   and/or other materials provided with the distribution.
 
- // * Neither the name of Google Inc. nor the names of its contributors may be
 
- //   used to endorse or promote products derived from this software without
 
- //   specific prior written permission.
 
- //
 
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 
- // POSSIBILITY OF SUCH DAMAGE.
 
- //
 
- // Author: joydeepb@ri.cmu.edu (Joydeep Biswas)
 
- //
 
- // This example demonstrates how to use the DynamicAutoDiffCostFunction
 
- // variant of CostFunction. The DynamicAutoDiffCostFunction is meant to
 
- // be used in cases where the number of parameter blocks or the sizes are not
 
- // known at compile time.
 
- //
 
- // This example simulates a robot traversing down a 1-dimension hallway with
 
- // noise odometry readings and noisy range readings of the end of the hallway.
 
- // By fusing the noisy odometry and sensor readings this example demonstrates
 
- // how to compute the maximum likelihood estimate (MLE) of the robot's pose at
 
- // each timestep.
 
- //
 
- // The robot starts at the origin, and it is travels to the end of a corridor of
 
- // fixed length specified by the "--corridor_length" flag. It executes a series
 
- // of motion commands to move forward a fixed length, specified by the
 
- // "--pose_separation" flag, at which pose it receives relative odometry
 
- // measurements as well as a range reading of the distance to the end of the
 
- // hallway. The odometry readings are drawn with Gaussian noise and standard
 
- // deviation specified by the "--odometry_stddev" flag, and the range readings
 
- // similarly with standard deviation specified by the "--range-stddev" flag.
 
- //
 
- // There are two types of residuals in this problem:
 
- // 1) The OdometryConstraint residual, that accounts for the odometry readings
 
- //    between successive pose estimatess of the robot.
 
- // 2) The RangeConstraint residual, that accounts for the errors in the observed
 
- //    range readings from each pose.
 
- //
 
- // The OdometryConstraint residual is modeled as an AutoDiffCostFunction with
 
- // a fixed parameter block size of 1, which is the relative odometry being
 
- // solved for, between a pair of successive poses of the robot. Differences
 
- // between observed and computed relative odometry values are penalized weighted
 
- // by the known standard deviation of the odometry readings.
 
- //
 
- // The RangeConstraint residual is modeled as a DynamicAutoDiffCostFunction
 
- // which sums up the relative odometry estimates to compute the estimated
 
- // global pose of the robot, and then computes the expected range reading.
 
- // Differences between the observed and expected range readings are then
 
- // penalized weighted by the standard deviation of readings of the sensor.
 
- // Since the number of poses of the robot is not known at compile time, this
 
- // cost function is implemented as a DynamicAutoDiffCostFunction.
 
- //
 
- // The outputs of the example are the initial values of the odometry and range
 
- // readings, and the range and odometry errors for every pose of the robot.
 
- // After computing the MLE, the computed poses and corrected odometry values
 
- // are printed out, along with the corresponding range and odometry errors. Note
 
- // that as an MLE of a noisy system the errors will not be reduced to zero, but
 
- // the odometry estimates will be updated to maximize the joint likelihood of
 
- // all odometry and range readings of the robot.
 
- //
 
- // Mathematical Formulation
 
- // ======================================================
 
- //
 
- // Let p_0, .., p_N be (N+1) robot poses, where the robot moves down the
 
- // corridor starting from p_0 and ending at p_N. We assume that p_0 is the
 
- // origin of the coordinate system.
 
- // Odometry u_i is the observed relative odometry between pose p_(i-1) and p_i,
 
- // and range reading y_i is the range reading of the end of the corridor from
 
- // pose p_i. Both odometry as well as range readings are noisy, but we wish to
 
- // compute the maximum likelihood estimate (MLE) of corrected odometry values
 
- // u*_0 to u*_(N-1), such that the Belief is optimized:
 
- //
 
- // Belief(u*_(0:N-1) | u_(0:N-1), y_(0:N-1))                                  1.
 
- //   =        P(u*_(0:N-1) | u_(0:N-1), y_(0:N-1))                            2.
 
- //   \propto  P(y_(0:N-1) | u*_(0:N-1), u_(0:N-1)) P(u*_(0:N-1) | u_(0:N-1))  3.
 
- //   =       \prod_i{ P(y_i | u*_(0:i)) P(u*_i | u_i) }                       4.
 
- //
 
- // Here, the subscript "(0:i)" is used as shorthand to indicate entries from all
 
- // timesteps 0 to i for that variable, both inclusive.
 
- //
 
- // Bayes' rule is used to derive eq. 3 from 2, and the independence of
 
- // odometry observations and range readings is expolited to derive 4 from 3.
 
- //
 
- // Thus, the Belief, up to scale, is factored as a product of a number of
 
- // terms, two for each pose, where for each pose term there is one term for the
 
- // range reading, P(y_i | u*_(0:i) and one term for the odometry reading,
 
- // P(u*_i | u_i) . Note that the term for the range reading is dependent on all
 
- // odometry values u*_(0:i), while the odometry term, P(u*_i | u_i) depends only
 
- // on a single value, u_i. Both the range reading as well as odoemtry
 
- // probability terms are modeled as the Normal distribution, and have the form:
 
- //
 
- // p(x) \propto \exp{-((x - x_mean) / x_stddev)^2}
 
- //
 
- // where x refers to either the MLE odometry u* or range reading y, and x_mean
 
- // is the corresponding mean value, u for the odometry terms, and y_expected,
 
- // the expected range reading based on all the previous odometry terms.
 
- // The MLE is thus found by finding those values x* which minimize:
 
- //
 
- // x* = \arg\min{((x - x_mean) / x_stddev)^2}
 
- //
 
- // which is in the nonlinear least-square form, suited to being solved by Ceres.
 
- // The non-linear component arise from the computation of x_mean. The residuals
 
- // ((x - x_mean) / x_stddev) for the residuals that Ceres will optimize. As
 
- // mentioned earlier, the odometry term for each pose depends only on one
 
- // variable, and will be computed by an AutoDiffCostFunction, while the term
 
- // for the range reading will depend on all previous odometry observations, and
 
- // will be computed by a DynamicAutoDiffCostFunction since the number of
 
- // odoemtry observations will only be known at run time.
 
- #include <cstdio>
 
- #include <math.h>
 
- #include <vector>
 
- #include "ceres/ceres.h"
 
- #include "ceres/dynamic_autodiff_cost_function.h"
 
- #include "gflags/gflags.h"
 
- #include "glog/logging.h"
 
- #include "random.h"
 
- using ceres::AutoDiffCostFunction;
 
- using ceres::DynamicAutoDiffCostFunction;
 
- using ceres::CauchyLoss;
 
- using ceres::CostFunction;
 
- using ceres::LossFunction;
 
- using ceres::Problem;
 
- using ceres::Solve;
 
- using ceres::Solver;
 
- using ceres::examples::RandNormal;
 
- using std::min;
 
- using std::vector;
 
- DEFINE_double(corridor_length, 30.0, "Length of the corridor that the robot is "
 
-               "travelling down.");
 
- DEFINE_double(pose_separation, 0.5, "The distance that the robot traverses "
 
-               "between successive odometry updates.");
 
- DEFINE_double(odometry_stddev, 0.1, "The standard deviation of "
 
-               "odometry error of the robot.");
 
- DEFINE_double(range_stddev, 0.01, "The standard deviation of range readings of "
 
-               "the robot.");
 
- // The stride length of the dynamic_autodiff_cost_function evaluator.
 
- static const int kStride = 10;
 
- struct OdometryConstraint {
 
-   typedef AutoDiffCostFunction<OdometryConstraint, 1, 1> OdometryCostFunction;
 
-   OdometryConstraint(double odometry_mean, double odometry_stddev) :
 
-       odometry_mean(odometry_mean), odometry_stddev(odometry_stddev) {}
 
-   template <typename T>
 
-   bool operator()(const T* const odometry, T* residual) const {
 
-     *residual = (*odometry - odometry_mean) / odometry_stddev;
 
-     return true;
 
-   }
 
-   static OdometryCostFunction* Create(const double odometry_value) {
 
-     return new OdometryCostFunction(
 
-         new OdometryConstraint(odometry_value, FLAGS_odometry_stddev));
 
-   }
 
-   const double odometry_mean;
 
-   const double odometry_stddev;
 
- };
 
- struct RangeConstraint {
 
-   typedef DynamicAutoDiffCostFunction<RangeConstraint, kStride>
 
-       RangeCostFunction;
 
-   RangeConstraint(
 
-       int pose_index,
 
-       double range_reading,
 
-       double range_stddev,
 
-       double corridor_length) :
 
-       pose_index(pose_index), range_reading(range_reading),
 
-       range_stddev(range_stddev), corridor_length(corridor_length) {}
 
-   template <typename T>
 
-   bool operator()(T const* const* relative_poses, T* residuals) const {
 
-     T global_pose(0);
 
-     for (int i = 0; i <= pose_index; ++i) {
 
-       global_pose += relative_poses[i][0];
 
-     }
 
-     residuals[0] = (global_pose + range_reading - corridor_length) /
 
-         range_stddev;
 
-     return true;
 
-   }
 
-   // Factory method to create a CostFunction from a RangeConstraint to
 
-   // conveniently add to a ceres problem.
 
-   static RangeCostFunction* Create(const int pose_index,
 
-                                    const double range_reading,
 
-                                    vector<double>* odometry_values,
 
-                                    vector<double*>* parameter_blocks) {
 
-     RangeConstraint* constraint = new RangeConstraint(
 
-         pose_index, range_reading, FLAGS_range_stddev, FLAGS_corridor_length);
 
-     RangeCostFunction* cost_function = new RangeCostFunction(constraint);
 
-     // Add all the parameter blocks that affect this constraint.
 
-     parameter_blocks->clear();
 
-     for (int i = 0; i <= pose_index; ++i) {
 
-       parameter_blocks->push_back(&((*odometry_values)[i]));
 
-       cost_function->AddParameterBlock(1);
 
-     }
 
-     cost_function->SetNumResiduals(1);
 
-     return (cost_function);
 
-   }
 
-   const int pose_index;
 
-   const double range_reading;
 
-   const double range_stddev;
 
-   const double corridor_length;
 
- };
 
- void SimulateRobot(vector<double>* odometry_values,
 
-                    vector<double>* range_readings) {
 
-   const int num_steps = static_cast<int>(
 
-       ceil(FLAGS_corridor_length / FLAGS_pose_separation));
 
-   // The robot starts out at the origin.
 
-   double robot_location = 0.0;
 
-   for (int i = 0; i < num_steps; ++i) {
 
-     const double actual_odometry_value = min(
 
-         FLAGS_pose_separation, FLAGS_corridor_length - robot_location);
 
-     robot_location += actual_odometry_value;
 
-     const double actual_range = FLAGS_corridor_length - robot_location;
 
-     const double observed_odometry =
 
-         RandNormal() * FLAGS_odometry_stddev + actual_odometry_value;
 
-     const double observed_range =
 
-         RandNormal() * FLAGS_range_stddev + actual_range;
 
-     odometry_values->push_back(observed_odometry);
 
-     range_readings->push_back(observed_range);
 
-   }
 
- }
 
- void PrintState(const vector<double>& odometry_readings,
 
-                 const vector<double>& range_readings) {
 
-   CHECK_EQ(odometry_readings.size(), range_readings.size());
 
-   double robot_location = 0.0;
 
-   printf("pose: location     odom    range  r.error  o.error\n");
 
-   for (int i = 0; i < odometry_readings.size(); ++i) {
 
-     robot_location += odometry_readings[i];
 
-     const double range_error =
 
-         robot_location + range_readings[i] - FLAGS_corridor_length;
 
-     const double odometry_error =
 
-         FLAGS_pose_separation - odometry_readings[i];
 
-     printf("%4d: %8.3f %8.3f %8.3f %8.3f %8.3f\n",
 
-            static_cast<int>(i), robot_location, odometry_readings[i],
 
-            range_readings[i], range_error, odometry_error);
 
-   }
 
- }
 
- int main(int argc, char** argv) {
 
-   google::InitGoogleLogging(argv[0]);
 
-   CERES_GFLAGS_NAMESPACE::ParseCommandLineFlags(&argc, &argv, true);
 
-   // Make sure that the arguments parsed are all positive.
 
-   CHECK_GT(FLAGS_corridor_length, 0.0);
 
-   CHECK_GT(FLAGS_pose_separation, 0.0);
 
-   CHECK_GT(FLAGS_odometry_stddev, 0.0);
 
-   CHECK_GT(FLAGS_range_stddev, 0.0);
 
-   vector<double> odometry_values;
 
-   vector<double> range_readings;
 
-   SimulateRobot(&odometry_values, &range_readings);
 
-   printf("Initial values:\n");
 
-   PrintState(odometry_values, range_readings);
 
-   ceres::Problem problem;
 
-   for (int i = 0; i < odometry_values.size(); ++i) {
 
-     // Create and add a DynamicAutoDiffCostFunction for the RangeConstraint from
 
-     // pose i.
 
-     vector<double*> parameter_blocks;
 
-     RangeConstraint::RangeCostFunction* range_cost_function =
 
-         RangeConstraint::Create(
 
-             i, range_readings[i], &odometry_values, ¶meter_blocks);
 
-     problem.AddResidualBlock(range_cost_function, NULL, parameter_blocks);
 
-     // Create and add an AutoDiffCostFunction for the OdometryConstraint for
 
-     // pose i.
 
-     problem.AddResidualBlock(OdometryConstraint::Create(odometry_values[i]),
 
-                              NULL,
 
-                              &(odometry_values[i]));
 
-   }
 
-   ceres::Solver::Options solver_options;
 
-   solver_options.minimizer_progress_to_stdout = true;
 
-   Solver::Summary summary;
 
-   printf("Solving...\n");
 
-   Solve(solver_options, &problem, &summary);
 
-   printf("Done.\n");
 
-   std::cout << summary.FullReport() << "\n";
 
-   printf("Final values:\n");
 
-   PrintState(odometry_values, range_readings);
 
-   return 0;
 
- }
 
 
  |