| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953 | 
							- // Ceres Solver - A fast non-linear least squares minimizer
 
- // Copyright 2015 Google Inc. All rights reserved.
 
- // http://ceres-solver.org/
 
- //
 
- // Redistribution and use in source and binary forms, with or without
 
- // modification, are permitted provided that the following conditions are met:
 
- //
 
- // * Redistributions of source code must retain the above copyright notice,
 
- //   this list of conditions and the following disclaimer.
 
- // * Redistributions in binary form must reproduce the above copyright notice,
 
- //   this list of conditions and the following disclaimer in the documentation
 
- //   and/or other materials provided with the distribution.
 
- // * Neither the name of Google Inc. nor the names of its contributors may be
 
- //   used to endorse or promote products derived from this software without
 
- //   specific prior written permission.
 
- //
 
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 
- // POSSIBILITY OF SUCH DAMAGE.
 
- //
 
- // Author: sameeragarwal@google.com (Sameer Agarwal)
 
- #include "ceres/local_parameterization.h"
 
- #include <cmath>
 
- #include <limits>
 
- #include <memory>
 
- #include "Eigen/Geometry"
 
- #include "ceres/autodiff_local_parameterization.h"
 
- #include "ceres/internal/autodiff.h"
 
- #include "ceres/internal/eigen.h"
 
- #include "ceres/internal/householder_vector.h"
 
- #include "ceres/random.h"
 
- #include "ceres/rotation.h"
 
- #include "gtest/gtest.h"
 
- namespace ceres {
 
- namespace internal {
 
- TEST(IdentityParameterization, EverythingTest) {
 
-   IdentityParameterization parameterization(3);
 
-   EXPECT_EQ(parameterization.GlobalSize(), 3);
 
-   EXPECT_EQ(parameterization.LocalSize(), 3);
 
-   double x[3] = {1.0, 2.0, 3.0};
 
-   double delta[3] = {0.0, 1.0, 2.0};
 
-   double x_plus_delta[3] = {0.0, 0.0, 0.0};
 
-   parameterization.Plus(x, delta, x_plus_delta);
 
-   EXPECT_EQ(x_plus_delta[0], 1.0);
 
-   EXPECT_EQ(x_plus_delta[1], 3.0);
 
-   EXPECT_EQ(x_plus_delta[2], 5.0);
 
-   double jacobian[9];
 
-   parameterization.ComputeJacobian(x, jacobian);
 
-   int k = 0;
 
-   for (int i = 0; i < 3; ++i) {
 
-     for (int j = 0; j < 3; ++j, ++k) {
 
-       EXPECT_EQ(jacobian[k], (i == j) ? 1.0 : 0.0);
 
-     }
 
-   }
 
-   Matrix global_matrix = Matrix::Ones(10, 3);
 
-   Matrix local_matrix = Matrix::Zero(10, 3);
 
-   parameterization.MultiplyByJacobian(
 
-       x, 10, global_matrix.data(), local_matrix.data());
 
-   EXPECT_EQ((local_matrix - global_matrix).norm(), 0.0);
 
- }
 
- TEST(SubsetParameterization, EmptyConstantParameters) {
 
-   std::vector<int> constant_parameters;
 
-   SubsetParameterization parameterization(3, constant_parameters);
 
-   EXPECT_EQ(parameterization.GlobalSize(), 3);
 
-   EXPECT_EQ(parameterization.LocalSize(), 3);
 
-   double x[3] = {1, 2, 3};
 
-   double delta[3] = {4, 5, 6};
 
-   double x_plus_delta[3] = {-1, -2, -3};
 
-   parameterization.Plus(x, delta, x_plus_delta);
 
-   EXPECT_EQ(x_plus_delta[0], x[0] + delta[0]);
 
-   EXPECT_EQ(x_plus_delta[1], x[1] + delta[1]);
 
-   EXPECT_EQ(x_plus_delta[2], x[2] + delta[2]);
 
-   Matrix jacobian(3, 3);
 
-   Matrix expected_jacobian(3, 3);
 
-   expected_jacobian.setIdentity();
 
-   parameterization.ComputeJacobian(x, jacobian.data());
 
-   EXPECT_EQ(jacobian, expected_jacobian);
 
-   Matrix global_matrix(3, 5);
 
-   global_matrix.setRandom();
 
-   Matrix local_matrix(3, 5);
 
-   parameterization.MultiplyByJacobian(
 
-       x, 5, global_matrix.data(), local_matrix.data());
 
-   EXPECT_EQ(global_matrix, local_matrix);
 
- }
 
- TEST(SubsetParameterization, NegativeParameterIndexDeathTest) {
 
-   std::vector<int> constant_parameters;
 
-   constant_parameters.push_back(-1);
 
-   EXPECT_DEATH_IF_SUPPORTED(
 
-       SubsetParameterization parameterization(2, constant_parameters),
 
-       "greater than equal to zero");
 
- }
 
- TEST(SubsetParameterization, GreaterThanSizeParameterIndexDeathTest) {
 
-   std::vector<int> constant_parameters;
 
-   constant_parameters.push_back(2);
 
-   EXPECT_DEATH_IF_SUPPORTED(
 
-       SubsetParameterization parameterization(2, constant_parameters),
 
-       "less than the size");
 
- }
 
- TEST(SubsetParameterization, DuplicateParametersDeathTest) {
 
-   std::vector<int> constant_parameters;
 
-   constant_parameters.push_back(1);
 
-   constant_parameters.push_back(1);
 
-   EXPECT_DEATH_IF_SUPPORTED(
 
-       SubsetParameterization parameterization(2, constant_parameters),
 
-       "duplicates");
 
- }
 
- TEST(SubsetParameterization,
 
-      ProductParameterizationWithZeroLocalSizeSubsetParameterization1) {
 
-   std::vector<int> constant_parameters;
 
-   constant_parameters.push_back(0);
 
-   LocalParameterization* subset_param =
 
-       new SubsetParameterization(1, constant_parameters);
 
-   LocalParameterization* identity_param = new IdentityParameterization(2);
 
-   ProductParameterization product_param(subset_param, identity_param);
 
-   EXPECT_EQ(product_param.GlobalSize(), 3);
 
-   EXPECT_EQ(product_param.LocalSize(), 2);
 
-   double x[] = {1.0, 1.0, 1.0};
 
-   double delta[] = {2.0, 3.0};
 
-   double x_plus_delta[] = {0.0, 0.0, 0.0};
 
-   EXPECT_TRUE(product_param.Plus(x, delta, x_plus_delta));
 
-   EXPECT_EQ(x_plus_delta[0], x[0]);
 
-   EXPECT_EQ(x_plus_delta[1], x[1] + delta[0]);
 
-   EXPECT_EQ(x_plus_delta[2], x[2] + delta[1]);
 
-   Matrix actual_jacobian(3, 2);
 
-   EXPECT_TRUE(product_param.ComputeJacobian(x, actual_jacobian.data()));
 
- }
 
- TEST(SubsetParameterization,
 
-      ProductParameterizationWithZeroLocalSizeSubsetParameterization2) {
 
-   std::vector<int> constant_parameters;
 
-   constant_parameters.push_back(0);
 
-   LocalParameterization* subset_param =
 
-       new SubsetParameterization(1, constant_parameters);
 
-   LocalParameterization* identity_param = new IdentityParameterization(2);
 
-   ProductParameterization product_param(identity_param, subset_param);
 
-   EXPECT_EQ(product_param.GlobalSize(), 3);
 
-   EXPECT_EQ(product_param.LocalSize(), 2);
 
-   double x[] = {1.0, 1.0, 1.0};
 
-   double delta[] = {2.0, 3.0};
 
-   double x_plus_delta[] = {0.0, 0.0, 0.0};
 
-   EXPECT_TRUE(product_param.Plus(x, delta, x_plus_delta));
 
-   EXPECT_EQ(x_plus_delta[0], x[0] + delta[0]);
 
-   EXPECT_EQ(x_plus_delta[1], x[1] + delta[1]);
 
-   EXPECT_EQ(x_plus_delta[2], x[2]);
 
-   Matrix actual_jacobian(3, 2);
 
-   EXPECT_TRUE(product_param.ComputeJacobian(x, actual_jacobian.data()));
 
- }
 
- TEST(SubsetParameterization, NormalFunctionTest) {
 
-   const int kGlobalSize = 4;
 
-   const int kLocalSize = 3;
 
-   double x[kGlobalSize] = {1.0, 2.0, 3.0, 4.0};
 
-   for (int i = 0; i < kGlobalSize; ++i) {
 
-     std::vector<int> constant_parameters;
 
-     constant_parameters.push_back(i);
 
-     SubsetParameterization parameterization(kGlobalSize, constant_parameters);
 
-     double delta[kLocalSize] = {1.0, 2.0, 3.0};
 
-     double x_plus_delta[kGlobalSize] = {0.0, 0.0, 0.0};
 
-     parameterization.Plus(x, delta, x_plus_delta);
 
-     int k = 0;
 
-     for (int j = 0; j < kGlobalSize; ++j) {
 
-       if (j == i) {
 
-         EXPECT_EQ(x_plus_delta[j], x[j]);
 
-       } else {
 
-         EXPECT_EQ(x_plus_delta[j], x[j] + delta[k++]);
 
-       }
 
-     }
 
-     double jacobian[kGlobalSize * kLocalSize];
 
-     parameterization.ComputeJacobian(x, jacobian);
 
-     int delta_cursor = 0;
 
-     int jacobian_cursor = 0;
 
-     for (int j = 0; j < kGlobalSize; ++j) {
 
-       if (j != i) {
 
-         for (int k = 0; k < kLocalSize; ++k, jacobian_cursor++) {
 
-           EXPECT_EQ(jacobian[jacobian_cursor], delta_cursor == k ? 1.0 : 0.0);
 
-         }
 
-         ++delta_cursor;
 
-       } else {
 
-         for (int k = 0; k < kLocalSize; ++k, jacobian_cursor++) {
 
-           EXPECT_EQ(jacobian[jacobian_cursor], 0.0);
 
-         }
 
-       }
 
-     }
 
-     Matrix global_matrix = Matrix::Ones(10, kGlobalSize);
 
-     for (int row = 0; row < kGlobalSize; ++row) {
 
-       for (int col = 0; col < kGlobalSize; ++col) {
 
-         global_matrix(row, col) = col;
 
-       }
 
-     }
 
-     Matrix local_matrix = Matrix::Zero(10, kLocalSize);
 
-     parameterization.MultiplyByJacobian(
 
-         x, 10, global_matrix.data(), local_matrix.data());
 
-     Matrix expected_local_matrix =
 
-         global_matrix * MatrixRef(jacobian, kGlobalSize, kLocalSize);
 
-     EXPECT_EQ((local_matrix - expected_local_matrix).norm(), 0.0);
 
-   }
 
- }
 
- // Functor needed to implement automatically differentiated Plus for
 
- // quaternions.
 
- struct QuaternionPlus {
 
-   template <typename T>
 
-   bool operator()(const T* x, const T* delta, T* x_plus_delta) const {
 
-     const T squared_norm_delta =
 
-         delta[0] * delta[0] + delta[1] * delta[1] + delta[2] * delta[2];
 
-     T q_delta[4];
 
-     if (squared_norm_delta > T(0.0)) {
 
-       T norm_delta = sqrt(squared_norm_delta);
 
-       const T sin_delta_by_delta = sin(norm_delta) / norm_delta;
 
-       q_delta[0] = cos(norm_delta);
 
-       q_delta[1] = sin_delta_by_delta * delta[0];
 
-       q_delta[2] = sin_delta_by_delta * delta[1];
 
-       q_delta[3] = sin_delta_by_delta * delta[2];
 
-     } else {
 
-       // We do not just use q_delta = [1,0,0,0] here because that is a
 
-       // constant and when used for automatic differentiation will
 
-       // lead to a zero derivative. Instead we take a first order
 
-       // approximation and evaluate it at zero.
 
-       q_delta[0] = T(1.0);
 
-       q_delta[1] = delta[0];
 
-       q_delta[2] = delta[1];
 
-       q_delta[3] = delta[2];
 
-     }
 
-     QuaternionProduct(q_delta, x, x_plus_delta);
 
-     return true;
 
-   }
 
- };
 
- template <typename Parameterization, typename Plus>
 
- void QuaternionParameterizationTestHelper(const double* x,
 
-                                           const double* delta,
 
-                                           const double* x_plus_delta_ref) {
 
-   const int kGlobalSize = 4;
 
-   const int kLocalSize = 3;
 
-   const double kTolerance = 1e-14;
 
-   double x_plus_delta[kGlobalSize] = {0.0, 0.0, 0.0, 0.0};
 
-   Parameterization parameterization;
 
-   parameterization.Plus(x, delta, x_plus_delta);
 
-   for (int i = 0; i < kGlobalSize; ++i) {
 
-     EXPECT_NEAR(x_plus_delta[i], x_plus_delta[i], kTolerance);
 
-   }
 
-   const double x_plus_delta_norm = sqrt(
 
-       x_plus_delta[0] * x_plus_delta[0] + x_plus_delta[1] * x_plus_delta[1] +
 
-       x_plus_delta[2] * x_plus_delta[2] + x_plus_delta[3] * x_plus_delta[3]);
 
-   EXPECT_NEAR(x_plus_delta_norm, 1.0, kTolerance);
 
-   double jacobian_ref[12];
 
-   double zero_delta[kLocalSize] = {0.0, 0.0, 0.0};
 
-   const double* parameters[2] = {x, zero_delta};
 
-   double* jacobian_array[2] = {NULL, jacobian_ref};
 
-   // Autodiff jacobian at delta_x = 0.
 
-   internal::AutoDifferentiate<kGlobalSize,
 
-                               StaticParameterDims<kGlobalSize, kLocalSize>>(
 
-       Plus(), parameters, kGlobalSize, x_plus_delta, jacobian_array);
 
-   double jacobian[12];
 
-   parameterization.ComputeJacobian(x, jacobian);
 
-   for (int i = 0; i < 12; ++i) {
 
-     EXPECT_TRUE(IsFinite(jacobian[i]));
 
-     EXPECT_NEAR(jacobian[i], jacobian_ref[i], kTolerance)
 
-         << "Jacobian mismatch: i = " << i << "\n Expected \n"
 
-         << ConstMatrixRef(jacobian_ref, kGlobalSize, kLocalSize)
 
-         << "\n Actual \n"
 
-         << ConstMatrixRef(jacobian, kGlobalSize, kLocalSize);
 
-   }
 
-   Matrix global_matrix = Matrix::Random(10, kGlobalSize);
 
-   Matrix local_matrix = Matrix::Zero(10, kLocalSize);
 
-   parameterization.MultiplyByJacobian(
 
-       x, 10, global_matrix.data(), local_matrix.data());
 
-   Matrix expected_local_matrix =
 
-       global_matrix * MatrixRef(jacobian, kGlobalSize, kLocalSize);
 
-   EXPECT_NEAR((local_matrix - expected_local_matrix).norm(),
 
-               0.0,
 
-               10.0 * std::numeric_limits<double>::epsilon());
 
- }
 
- template <int N>
 
- void Normalize(double* x) {
 
-   VectorRef(x, N).normalize();
 
- }
 
- TEST(QuaternionParameterization, ZeroTest) {
 
-   double x[4] = {0.5, 0.5, 0.5, 0.5};
 
-   double delta[3] = {0.0, 0.0, 0.0};
 
-   double q_delta[4] = {1.0, 0.0, 0.0, 0.0};
 
-   double x_plus_delta[4] = {0.0, 0.0, 0.0, 0.0};
 
-   QuaternionProduct(q_delta, x, x_plus_delta);
 
-   QuaternionParameterizationTestHelper<QuaternionParameterization,
 
-                                        QuaternionPlus>(x, delta, x_plus_delta);
 
- }
 
- TEST(QuaternionParameterization, NearZeroTest) {
 
-   double x[4] = {0.52, 0.25, 0.15, 0.45};
 
-   Normalize<4>(x);
 
-   double delta[3] = {0.24, 0.15, 0.10};
 
-   for (int i = 0; i < 3; ++i) {
 
-     delta[i] = delta[i] * 1e-14;
 
-   }
 
-   double q_delta[4];
 
-   q_delta[0] = 1.0;
 
-   q_delta[1] = delta[0];
 
-   q_delta[2] = delta[1];
 
-   q_delta[3] = delta[2];
 
-   double x_plus_delta[4] = {0.0, 0.0, 0.0, 0.0};
 
-   QuaternionProduct(q_delta, x, x_plus_delta);
 
-   QuaternionParameterizationTestHelper<QuaternionParameterization,
 
-                                        QuaternionPlus>(x, delta, x_plus_delta);
 
- }
 
- TEST(QuaternionParameterization, AwayFromZeroTest) {
 
-   double x[4] = {0.52, 0.25, 0.15, 0.45};
 
-   Normalize<4>(x);
 
-   double delta[3] = {0.24, 0.15, 0.10};
 
-   const double delta_norm =
 
-       sqrt(delta[0] * delta[0] + delta[1] * delta[1] + delta[2] * delta[2]);
 
-   double q_delta[4];
 
-   q_delta[0] = cos(delta_norm);
 
-   q_delta[1] = sin(delta_norm) / delta_norm * delta[0];
 
-   q_delta[2] = sin(delta_norm) / delta_norm * delta[1];
 
-   q_delta[3] = sin(delta_norm) / delta_norm * delta[2];
 
-   double x_plus_delta[4] = {0.0, 0.0, 0.0, 0.0};
 
-   QuaternionProduct(q_delta, x, x_plus_delta);
 
-   QuaternionParameterizationTestHelper<QuaternionParameterization,
 
-                                        QuaternionPlus>(x, delta, x_plus_delta);
 
- }
 
- // Functor needed to implement automatically differentiated Plus for
 
- // Eigen's quaternion.
 
- struct EigenQuaternionPlus {
 
-   template <typename T>
 
-   bool operator()(const T* x, const T* delta, T* x_plus_delta) const {
 
-     const T norm_delta =
 
-         sqrt(delta[0] * delta[0] + delta[1] * delta[1] + delta[2] * delta[2]);
 
-     Eigen::Quaternion<T> q_delta;
 
-     if (norm_delta > T(0.0)) {
 
-       const T sin_delta_by_delta = sin(norm_delta) / norm_delta;
 
-       q_delta.coeffs() << sin_delta_by_delta * delta[0],
 
-           sin_delta_by_delta * delta[1], sin_delta_by_delta * delta[2],
 
-           cos(norm_delta);
 
-     } else {
 
-       // We do not just use q_delta = [0,0,0,1] here because that is a
 
-       // constant and when used for automatic differentiation will
 
-       // lead to a zero derivative. Instead we take a first order
 
-       // approximation and evaluate it at zero.
 
-       q_delta.coeffs() << delta[0], delta[1], delta[2], T(1.0);
 
-     }
 
-     Eigen::Map<Eigen::Quaternion<T>> x_plus_delta_ref(x_plus_delta);
 
-     Eigen::Map<const Eigen::Quaternion<T>> x_ref(x);
 
-     x_plus_delta_ref = q_delta * x_ref;
 
-     return true;
 
-   }
 
- };
 
- TEST(EigenQuaternionParameterization, ZeroTest) {
 
-   Eigen::Quaterniond x(0.5, 0.5, 0.5, 0.5);
 
-   double delta[3] = {0.0, 0.0, 0.0};
 
-   Eigen::Quaterniond q_delta(1.0, 0.0, 0.0, 0.0);
 
-   Eigen::Quaterniond x_plus_delta = q_delta * x;
 
-   QuaternionParameterizationTestHelper<EigenQuaternionParameterization,
 
-                                        EigenQuaternionPlus>(
 
-       x.coeffs().data(), delta, x_plus_delta.coeffs().data());
 
- }
 
- TEST(EigenQuaternionParameterization, NearZeroTest) {
 
-   Eigen::Quaterniond x(0.52, 0.25, 0.15, 0.45);
 
-   x.normalize();
 
-   double delta[3] = {0.24, 0.15, 0.10};
 
-   for (int i = 0; i < 3; ++i) {
 
-     delta[i] = delta[i] * 1e-14;
 
-   }
 
-   // Note: w is first in the constructor.
 
-   Eigen::Quaterniond q_delta(1.0, delta[0], delta[1], delta[2]);
 
-   Eigen::Quaterniond x_plus_delta = q_delta * x;
 
-   QuaternionParameterizationTestHelper<EigenQuaternionParameterization,
 
-                                        EigenQuaternionPlus>(
 
-       x.coeffs().data(), delta, x_plus_delta.coeffs().data());
 
- }
 
- TEST(EigenQuaternionParameterization, AwayFromZeroTest) {
 
-   Eigen::Quaterniond x(0.52, 0.25, 0.15, 0.45);
 
-   x.normalize();
 
-   double delta[3] = {0.24, 0.15, 0.10};
 
-   const double delta_norm =
 
-       sqrt(delta[0] * delta[0] + delta[1] * delta[1] + delta[2] * delta[2]);
 
-   // Note: w is first in the constructor.
 
-   Eigen::Quaterniond q_delta(cos(delta_norm),
 
-                              sin(delta_norm) / delta_norm * delta[0],
 
-                              sin(delta_norm) / delta_norm * delta[1],
 
-                              sin(delta_norm) / delta_norm * delta[2]);
 
-   Eigen::Quaterniond x_plus_delta = q_delta * x;
 
-   QuaternionParameterizationTestHelper<EigenQuaternionParameterization,
 
-                                        EigenQuaternionPlus>(
 
-       x.coeffs().data(), delta, x_plus_delta.coeffs().data());
 
- }
 
- // Functor needed to implement automatically differentiated Plus for
 
- // homogeneous vectors.
 
- template <int Dim>
 
- struct HomogeneousVectorParameterizationPlus {
 
-   template <typename Scalar>
 
-   bool operator()(const Scalar* p_x,
 
-                   const Scalar* p_delta,
 
-                   Scalar* p_x_plus_delta) const {
 
-     Eigen::Map<const Eigen::Matrix<Scalar, Dim, 1>> x(p_x);
 
-     Eigen::Map<const Eigen::Matrix<Scalar, Dim - 1, 1>> delta(p_delta);
 
-     Eigen::Map<Eigen::Matrix<Scalar, Dim, 1>> x_plus_delta(p_x_plus_delta);
 
-     const Scalar squared_norm_delta = delta.squaredNorm();
 
-     Eigen::Matrix<Scalar, Dim, 1> y;
 
-     Scalar one_half(0.5);
 
-     if (squared_norm_delta > Scalar(0.0)) {
 
-       Scalar norm_delta = sqrt(squared_norm_delta);
 
-       Scalar norm_delta_div_2 = 0.5 * norm_delta;
 
-       const Scalar sin_delta_by_delta =
 
-           sin(norm_delta_div_2) / norm_delta_div_2;
 
-       y.template head<Dim - 1>() = sin_delta_by_delta * one_half * delta;
 
-       y[Dim - 1] = cos(norm_delta_div_2);
 
-     } else {
 
-       // We do not just use y = [0,0,0,1] here because that is a
 
-       // constant and when used for automatic differentiation will
 
-       // lead to a zero derivative. Instead we take a first order
 
-       // approximation and evaluate it at zero.
 
-       y.template head<Dim - 1>() = delta * one_half;
 
-       y[Dim - 1] = Scalar(1.0);
 
-     }
 
-     Eigen::Matrix<Scalar, Dim, 1> v;
 
-     Scalar beta;
 
-     // NOTE: The explicit template arguments are needed here because
 
-     // ComputeHouseholderVector is templated and some versions of MSVC
 
-     // have trouble deducing the type of v automatically.
 
-     internal::ComputeHouseholderVector<
 
-         Eigen::Map<const Eigen::Matrix<Scalar, Dim, 1>>,
 
-         Scalar,
 
-         Dim>(x, &v, &beta);
 
-     x_plus_delta = x.norm() * (y - v * (beta * v.dot(y)));
 
-     return true;
 
-   }
 
- };
 
- static void HomogeneousVectorParameterizationHelper(const double* x,
 
-                                                     const double* delta) {
 
-   const double kTolerance = 1e-14;
 
-   HomogeneousVectorParameterization homogeneous_vector_parameterization(4);
 
-   // Ensure the update maintains the norm.
 
-   double x_plus_delta[4] = {0.0, 0.0, 0.0, 0.0};
 
-   homogeneous_vector_parameterization.Plus(x, delta, x_plus_delta);
 
-   const double x_plus_delta_norm = sqrt(
 
-       x_plus_delta[0] * x_plus_delta[0] + x_plus_delta[1] * x_plus_delta[1] +
 
-       x_plus_delta[2] * x_plus_delta[2] + x_plus_delta[3] * x_plus_delta[3]);
 
-   const double x_norm =
 
-       sqrt(x[0] * x[0] + x[1] * x[1] + x[2] * x[2] + x[3] * x[3]);
 
-   EXPECT_NEAR(x_plus_delta_norm, x_norm, kTolerance);
 
-   // Autodiff jacobian at delta_x = 0.
 
-   AutoDiffLocalParameterization<HomogeneousVectorParameterizationPlus<4>, 4, 3>
 
-       autodiff_jacobian;
 
-   double jacobian_autodiff[12];
 
-   double jacobian_analytic[12];
 
-   homogeneous_vector_parameterization.ComputeJacobian(x, jacobian_analytic);
 
-   autodiff_jacobian.ComputeJacobian(x, jacobian_autodiff);
 
-   for (int i = 0; i < 12; ++i) {
 
-     EXPECT_TRUE(ceres::IsFinite(jacobian_analytic[i]));
 
-     EXPECT_NEAR(jacobian_analytic[i], jacobian_autodiff[i], kTolerance)
 
-         << "Jacobian mismatch: i = " << i << ", " << jacobian_analytic[i] << " "
 
-         << jacobian_autodiff[i];
 
-   }
 
- }
 
- TEST(HomogeneousVectorParameterization, ZeroTest) {
 
-   double x[4] = {0.0, 0.0, 0.0, 1.0};
 
-   Normalize<4>(x);
 
-   double delta[3] = {0.0, 0.0, 0.0};
 
-   HomogeneousVectorParameterizationHelper(x, delta);
 
- }
 
- TEST(HomogeneousVectorParameterization, NearZeroTest1) {
 
-   double x[4] = {1e-5, 1e-5, 1e-5, 1.0};
 
-   Normalize<4>(x);
 
-   double delta[3] = {0.0, 1.0, 0.0};
 
-   HomogeneousVectorParameterizationHelper(x, delta);
 
- }
 
- TEST(HomogeneousVectorParameterization, NearZeroTest2) {
 
-   double x[4] = {0.001, 0.0, 0.0, 0.0};
 
-   double delta[3] = {0.0, 1.0, 0.0};
 
-   HomogeneousVectorParameterizationHelper(x, delta);
 
- }
 
- TEST(HomogeneousVectorParameterization, AwayFromZeroTest1) {
 
-   double x[4] = {0.52, 0.25, 0.15, 0.45};
 
-   Normalize<4>(x);
 
-   double delta[3] = {0.0, 1.0, -0.5};
 
-   HomogeneousVectorParameterizationHelper(x, delta);
 
- }
 
- TEST(HomogeneousVectorParameterization, AwayFromZeroTest2) {
 
-   double x[4] = {0.87, -0.25, -0.34, 0.45};
 
-   Normalize<4>(x);
 
-   double delta[3] = {0.0, 0.0, -0.5};
 
-   HomogeneousVectorParameterizationHelper(x, delta);
 
- }
 
- TEST(HomogeneousVectorParameterization, AwayFromZeroTest3) {
 
-   double x[4] = {0.0, 0.0, 0.0, 2.0};
 
-   double delta[3] = {0.0, 0.0, 0};
 
-   HomogeneousVectorParameterizationHelper(x, delta);
 
- }
 
- TEST(HomogeneousVectorParameterization, AwayFromZeroTest4) {
 
-   double x[4] = {0.2, -1.0, 0.0, 2.0};
 
-   double delta[3] = {1.4, 0.0, -0.5};
 
-   HomogeneousVectorParameterizationHelper(x, delta);
 
- }
 
- TEST(HomogeneousVectorParameterization, AwayFromZeroTest5) {
 
-   double x[4] = {2.0, 0.0, 0.0, 0.0};
 
-   double delta[3] = {1.4, 0.0, -0.5};
 
-   HomogeneousVectorParameterizationHelper(x, delta);
 
- }
 
- TEST(HomogeneousVectorParameterization, DeathTests) {
 
-   EXPECT_DEATH_IF_SUPPORTED(HomogeneousVectorParameterization x(1), "size");
 
- }
 
- // Functor needed to implement automatically differentiated Plus for
 
- // line parameterization.
 
- template <int AmbientSpaceDim>
 
- struct LineParameterizationPlus {
 
-   template <typename Scalar>
 
-   bool operator()(const Scalar* p_x,
 
-                   const Scalar* p_delta,
 
-                   Scalar* p_x_plus_delta) const {
 
-     static constexpr int kTangetSpaceDim = AmbientSpaceDim - 1;
 
-     Eigen::Map<const Eigen::Matrix<Scalar, AmbientSpaceDim, 1>> origin_point(
 
-         p_x);
 
-     Eigen::Map<const Eigen::Matrix<Scalar, AmbientSpaceDim, 1>> dir(
 
-         p_x + AmbientSpaceDim);
 
-     Eigen::Map<const Eigen::Matrix<Scalar, kTangetSpaceDim, 1>>
 
-         delta_origin_point(p_delta);
 
-     Eigen::Map<Eigen::Matrix<Scalar, AmbientSpaceDim, 1>>
 
-         origin_point_plus_delta(p_x_plus_delta);
 
-     HomogeneousVectorParameterizationPlus<AmbientSpaceDim> dir_plus;
 
-     dir_plus(dir.data(),
 
-              p_delta + kTangetSpaceDim,
 
-              p_x_plus_delta + AmbientSpaceDim);
 
-     Eigen::Matrix<Scalar, AmbientSpaceDim, 1> v;
 
-     Scalar beta;
 
-     // NOTE: The explicit template arguments are needed here because
 
-     // ComputeHouseholderVector is templated and some versions of MSVC
 
-     // have trouble deducing the type of v automatically.
 
-     internal::ComputeHouseholderVector<
 
-         Eigen::Map<const Eigen::Matrix<Scalar, AmbientSpaceDim, 1>>,
 
-         Scalar,
 
-         AmbientSpaceDim>(dir, &v, &beta);
 
-     Eigen::Matrix<Scalar, AmbientSpaceDim, 1> y;
 
-     y << 0.5 * delta_origin_point, Scalar(0.0);
 
-     origin_point_plus_delta = origin_point + y - v * (beta * v.dot(y));
 
-     return true;
 
-   }
 
- };
 
- template <int AmbientSpaceDim>
 
- static void LineParameterizationHelper(const double* x_ptr,
 
-                                        const double* delta) {
 
-   const double kTolerance = 1e-14;
 
-   static constexpr int ParameterDim = 2 * AmbientSpaceDim;
 
-   static constexpr int TangientParameterDim = 2 * (AmbientSpaceDim - 1);
 
-   LineParameterization<AmbientSpaceDim> line_parameterization;
 
-   using ParameterVector = Eigen::Matrix<double, ParameterDim, 1>;
 
-   ParameterVector x_plus_delta = ParameterVector::Zero();
 
-   line_parameterization.Plus(x_ptr, delta, x_plus_delta.data());
 
-   // Ensure the update maintains the norm for the line direction.
 
-   Eigen::Map<const ParameterVector> x(x_ptr);
 
-   const double dir_plus_delta_norm =
 
-       x_plus_delta.template tail<AmbientSpaceDim>().norm();
 
-   const double dir_norm = x.template tail<AmbientSpaceDim>().norm();
 
-   EXPECT_NEAR(dir_plus_delta_norm, dir_norm, kTolerance);
 
-   // Ensure the update of the origin point is perpendicular to the line
 
-   // direction.
 
-   const double dot_prod_val = x.template tail<AmbientSpaceDim>().dot(
 
-       x_plus_delta.template head<AmbientSpaceDim>() -
 
-       x.template head<AmbientSpaceDim>());
 
-   EXPECT_NEAR(dot_prod_val, 0.0, kTolerance);
 
-   // Autodiff jacobian at delta_x = 0.
 
-   AutoDiffLocalParameterization<LineParameterizationPlus<AmbientSpaceDim>,
 
-                                 ParameterDim,
 
-                                 TangientParameterDim>
 
-       autodiff_jacobian;
 
-   using JacobianMatrix = Eigen::
 
-       Matrix<double, ParameterDim, TangientParameterDim, Eigen::RowMajor>;
 
-   constexpr double kNaN = std::numeric_limits<double>::quiet_NaN();
 
-   JacobianMatrix jacobian_autodiff = JacobianMatrix::Constant(kNaN);
 
-   JacobianMatrix jacobian_analytic = JacobianMatrix::Constant(kNaN);
 
-   autodiff_jacobian.ComputeJacobian(x_ptr, jacobian_autodiff.data());
 
-   line_parameterization.ComputeJacobian(x_ptr, jacobian_analytic.data());
 
-   EXPECT_FALSE(jacobian_autodiff.hasNaN());
 
-   EXPECT_FALSE(jacobian_analytic.hasNaN());
 
-   EXPECT_TRUE(jacobian_autodiff.isApprox(jacobian_analytic))
 
-       << "auto diff:\n"
 
-       << jacobian_autodiff << "\n"
 
-       << "analytic diff:\n"
 
-       << jacobian_analytic;
 
- }
 
- TEST(LineParameterization, ZeroTest3D) {
 
-   double x[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 1.0};
 
-   double delta[4] = {0.0, 0.0, 0.0, 0.0};
 
-   LineParameterizationHelper<3>(x, delta);
 
- }
 
- TEST(LineParameterization, ZeroTest4D) {
 
-   double x[8] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0};
 
-   double delta[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
 
-   LineParameterizationHelper<4>(x, delta);
 
- }
 
- TEST(LineParameterization, ZeroOriginPointTest3D) {
 
-   double x[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 1.0};
 
-   double delta[4] = {0.0, 0.0, 1.0, 2.0};
 
-   LineParameterizationHelper<3>(x, delta);
 
- }
 
- TEST(LineParameterization, ZeroOriginPointTest4D) {
 
-   double x[8] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0};
 
-   double delta[6] = {0.0, 0.0, 0.0, 1.0, 2.0, 3.0};
 
-   LineParameterizationHelper<4>(x, delta);
 
- }
 
- TEST(LineParameterization, ZeroDirTest3D) {
 
-   double x[6] = {0.0, 0.0, 0.0, 0.0, 0.0, 1.0};
 
-   double delta[4] = {3.0, 2.0, 0.0, 0.0};
 
-   LineParameterizationHelper<3>(x, delta);
 
- }
 
- TEST(LineParameterization, ZeroDirTest4D) {
 
-   double x[8] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0};
 
-   double delta[6] = {3.0, 2.0, 1.0, 0.0, 0.0, 0.0};
 
-   LineParameterizationHelper<4>(x, delta);
 
- }
 
- TEST(LineParameterization, AwayFromZeroTest3D1) {
 
-   Eigen::Matrix<double, 6, 1> x;
 
-   x.head<3>() << 1.54, 2.32, 1.34;
 
-   x.tail<3>() << 0.52, 0.25, 0.15;
 
-   x.tail<3>().normalize();
 
-   double delta[4] = {4.0, 7.0, 1.0, -0.5};
 
-   LineParameterizationHelper<3>(x.data(), delta);
 
- }
 
- TEST(LineParameterization, AwayFromZeroTest4D1) {
 
-   Eigen::Matrix<double, 8, 1> x;
 
-   x.head<4>() << 1.54, 2.32, 1.34, 3.23;
 
-   x.tail<4>() << 0.52, 0.25, 0.15, 0.45;
 
-   x.tail<4>().normalize();
 
-   double delta[6] = {4.0, 7.0, -3.0, 0.0, 1.0, -0.5};
 
-   LineParameterizationHelper<4>(x.data(), delta);
 
- }
 
- TEST(LineParameterization, AwayFromZeroTest3D2) {
 
-   Eigen::Matrix<double, 6, 1> x;
 
-   x.head<3>() << 7.54, -2.81, 8.63;
 
-   x.tail<3>() << 2.52, 5.25, 4.15;
 
-   double delta[4] = {4.0, 7.0, 1.0, -0.5};
 
-   LineParameterizationHelper<3>(x.data(), delta);
 
- }
 
- TEST(LineParameterization, AwayFromZeroTest4D2) {
 
-   Eigen::Matrix<double, 8, 1> x;
 
-   x.head<4>() << 7.54, -2.81, 8.63, 6.93;
 
-   x.tail<4>() << 2.52, 5.25, 4.15, 1.45;
 
-   double delta[6] = {4.0, 7.0, -3.0, 2.0, 1.0, -0.5};
 
-   LineParameterizationHelper<4>(x.data(), delta);
 
- }
 
- class ProductParameterizationTest : public ::testing::Test {
 
-  protected:
 
-   void SetUp() final {
 
-     const int global_size1 = 5;
 
-     std::vector<int> constant_parameters1;
 
-     constant_parameters1.push_back(2);
 
-     param1_.reset(
 
-         new SubsetParameterization(global_size1, constant_parameters1));
 
-     const int global_size2 = 3;
 
-     std::vector<int> constant_parameters2;
 
-     constant_parameters2.push_back(0);
 
-     constant_parameters2.push_back(1);
 
-     param2_.reset(
 
-         new SubsetParameterization(global_size2, constant_parameters2));
 
-     const int global_size3 = 4;
 
-     std::vector<int> constant_parameters3;
 
-     constant_parameters3.push_back(1);
 
-     param3_.reset(
 
-         new SubsetParameterization(global_size3, constant_parameters3));
 
-     const int global_size4 = 2;
 
-     std::vector<int> constant_parameters4;
 
-     constant_parameters4.push_back(1);
 
-     param4_.reset(
 
-         new SubsetParameterization(global_size4, constant_parameters4));
 
-   }
 
-   std::unique_ptr<LocalParameterization> param1_;
 
-   std::unique_ptr<LocalParameterization> param2_;
 
-   std::unique_ptr<LocalParameterization> param3_;
 
-   std::unique_ptr<LocalParameterization> param4_;
 
- };
 
- TEST_F(ProductParameterizationTest, LocalAndGlobalSize2) {
 
-   LocalParameterization* param1 = param1_.release();
 
-   LocalParameterization* param2 = param2_.release();
 
-   ProductParameterization product_param(param1, param2);
 
-   EXPECT_EQ(product_param.LocalSize(),
 
-             param1->LocalSize() + param2->LocalSize());
 
-   EXPECT_EQ(product_param.GlobalSize(),
 
-             param1->GlobalSize() + param2->GlobalSize());
 
- }
 
- TEST_F(ProductParameterizationTest, LocalAndGlobalSize3) {
 
-   LocalParameterization* param1 = param1_.release();
 
-   LocalParameterization* param2 = param2_.release();
 
-   LocalParameterization* param3 = param3_.release();
 
-   ProductParameterization product_param(param1, param2, param3);
 
-   EXPECT_EQ(product_param.LocalSize(),
 
-             param1->LocalSize() + param2->LocalSize() + param3->LocalSize());
 
-   EXPECT_EQ(product_param.GlobalSize(),
 
-             param1->GlobalSize() + param2->GlobalSize() + param3->GlobalSize());
 
- }
 
- TEST_F(ProductParameterizationTest, LocalAndGlobalSize4) {
 
-   LocalParameterization* param1 = param1_.release();
 
-   LocalParameterization* param2 = param2_.release();
 
-   LocalParameterization* param3 = param3_.release();
 
-   LocalParameterization* param4 = param4_.release();
 
-   ProductParameterization product_param(param1, param2, param3, param4);
 
-   EXPECT_EQ(product_param.LocalSize(),
 
-             param1->LocalSize() + param2->LocalSize() + param3->LocalSize() +
 
-                 param4->LocalSize());
 
-   EXPECT_EQ(product_param.GlobalSize(),
 
-             param1->GlobalSize() + param2->GlobalSize() + param3->GlobalSize() +
 
-                 param4->GlobalSize());
 
- }
 
- TEST_F(ProductParameterizationTest, Plus) {
 
-   LocalParameterization* param1 = param1_.release();
 
-   LocalParameterization* param2 = param2_.release();
 
-   LocalParameterization* param3 = param3_.release();
 
-   LocalParameterization* param4 = param4_.release();
 
-   ProductParameterization product_param(param1, param2, param3, param4);
 
-   std::vector<double> x(product_param.GlobalSize(), 0.0);
 
-   std::vector<double> delta(product_param.LocalSize(), 0.0);
 
-   std::vector<double> x_plus_delta_expected(product_param.GlobalSize(), 0.0);
 
-   std::vector<double> x_plus_delta(product_param.GlobalSize(), 0.0);
 
-   for (int i = 0; i < product_param.GlobalSize(); ++i) {
 
-     x[i] = RandNormal();
 
-   }
 
-   for (int i = 0; i < product_param.LocalSize(); ++i) {
 
-     delta[i] = RandNormal();
 
-   }
 
-   EXPECT_TRUE(product_param.Plus(&x[0], &delta[0], &x_plus_delta_expected[0]));
 
-   int x_cursor = 0;
 
-   int delta_cursor = 0;
 
-   EXPECT_TRUE(param1->Plus(
 
-       &x[x_cursor], &delta[delta_cursor], &x_plus_delta[x_cursor]));
 
-   x_cursor += param1->GlobalSize();
 
-   delta_cursor += param1->LocalSize();
 
-   EXPECT_TRUE(param2->Plus(
 
-       &x[x_cursor], &delta[delta_cursor], &x_plus_delta[x_cursor]));
 
-   x_cursor += param2->GlobalSize();
 
-   delta_cursor += param2->LocalSize();
 
-   EXPECT_TRUE(param3->Plus(
 
-       &x[x_cursor], &delta[delta_cursor], &x_plus_delta[x_cursor]));
 
-   x_cursor += param3->GlobalSize();
 
-   delta_cursor += param3->LocalSize();
 
-   EXPECT_TRUE(param4->Plus(
 
-       &x[x_cursor], &delta[delta_cursor], &x_plus_delta[x_cursor]));
 
-   x_cursor += param4->GlobalSize();
 
-   delta_cursor += param4->LocalSize();
 
-   for (int i = 0; i < x.size(); ++i) {
 
-     EXPECT_EQ(x_plus_delta[i], x_plus_delta_expected[i]);
 
-   }
 
- }
 
- TEST_F(ProductParameterizationTest, ComputeJacobian) {
 
-   LocalParameterization* param1 = param1_.release();
 
-   LocalParameterization* param2 = param2_.release();
 
-   LocalParameterization* param3 = param3_.release();
 
-   LocalParameterization* param4 = param4_.release();
 
-   ProductParameterization product_param(param1, param2, param3, param4);
 
-   std::vector<double> x(product_param.GlobalSize(), 0.0);
 
-   for (int i = 0; i < product_param.GlobalSize(); ++i) {
 
-     x[i] = RandNormal();
 
-   }
 
-   Matrix jacobian =
 
-       Matrix::Random(product_param.GlobalSize(), product_param.LocalSize());
 
-   EXPECT_TRUE(product_param.ComputeJacobian(&x[0], jacobian.data()));
 
-   int x_cursor = 0;
 
-   int delta_cursor = 0;
 
-   Matrix jacobian1(param1->GlobalSize(), param1->LocalSize());
 
-   EXPECT_TRUE(param1->ComputeJacobian(&x[x_cursor], jacobian1.data()));
 
-   jacobian.block(
 
-       x_cursor, delta_cursor, param1->GlobalSize(), param1->LocalSize()) -=
 
-       jacobian1;
 
-   x_cursor += param1->GlobalSize();
 
-   delta_cursor += param1->LocalSize();
 
-   Matrix jacobian2(param2->GlobalSize(), param2->LocalSize());
 
-   EXPECT_TRUE(param2->ComputeJacobian(&x[x_cursor], jacobian2.data()));
 
-   jacobian.block(
 
-       x_cursor, delta_cursor, param2->GlobalSize(), param2->LocalSize()) -=
 
-       jacobian2;
 
-   x_cursor += param2->GlobalSize();
 
-   delta_cursor += param2->LocalSize();
 
-   Matrix jacobian3(param3->GlobalSize(), param3->LocalSize());
 
-   EXPECT_TRUE(param3->ComputeJacobian(&x[x_cursor], jacobian3.data()));
 
-   jacobian.block(
 
-       x_cursor, delta_cursor, param3->GlobalSize(), param3->LocalSize()) -=
 
-       jacobian3;
 
-   x_cursor += param3->GlobalSize();
 
-   delta_cursor += param3->LocalSize();
 
-   Matrix jacobian4(param4->GlobalSize(), param4->LocalSize());
 
-   EXPECT_TRUE(param4->ComputeJacobian(&x[x_cursor], jacobian4.data()));
 
-   jacobian.block(
 
-       x_cursor, delta_cursor, param4->GlobalSize(), param4->LocalSize()) -=
 
-       jacobian4;
 
-   x_cursor += param4->GlobalSize();
 
-   delta_cursor += param4->LocalSize();
 
-   EXPECT_NEAR(jacobian.norm(), 0.0, std::numeric_limits<double>::epsilon());
 
- }
 
- }  // namespace internal
 
- }  // namespace ceres
 
 
  |