| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2015 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: sameeragarwal@google.com (Sameer Agarwal)//// TODO(sameeragarwal): Add support for larger, more complicated and// poorly conditioned problems both for correctness testing as well as// benchmarking.#include "ceres/iterative_schur_complement_solver.h"#include <cstddef>#include <memory>#include "Eigen/Dense"#include "ceres/block_random_access_dense_matrix.h"#include "ceres/block_sparse_matrix.h"#include "ceres/casts.h"#include "ceres/context_impl.h"#include "ceres/internal/eigen.h"#include "ceres/linear_least_squares_problems.h"#include "ceres/linear_solver.h"#include "ceres/schur_eliminator.h"#include "ceres/triplet_sparse_matrix.h"#include "ceres/types.h"#include "glog/logging.h"#include "gtest/gtest.h"namespace ceres {namespace internal {using testing::AssertionResult;const double kEpsilon = 1e-14;class IterativeSchurComplementSolverTest : public ::testing::Test { protected:  void SetUpProblem(int problem_id) {    std::unique_ptr<LinearLeastSquaresProblem> problem(        CreateLinearLeastSquaresProblemFromId(problem_id));    CHECK(problem != nullptr);    A_.reset(down_cast<BlockSparseMatrix*>(problem->A.release()));    b_.reset(problem->b.release());    D_.reset(problem->D.release());    num_cols_ = A_->num_cols();    num_rows_ = A_->num_rows();    num_eliminate_blocks_ = problem->num_eliminate_blocks;  }  AssertionResult TestSolver(double* D) {    TripletSparseMatrix triplet_A(        A_->num_rows(), A_->num_cols(), A_->num_nonzeros());    A_->ToTripletSparseMatrix(&triplet_A);    DenseSparseMatrix dense_A(triplet_A);    LinearSolver::Options options;    options.type = DENSE_QR;    ContextImpl context;    options.context = &context;    std::unique_ptr<LinearSolver> qr(LinearSolver::Create(options));    LinearSolver::PerSolveOptions per_solve_options;    per_solve_options.D = D;    Vector reference_solution(num_cols_);    qr->Solve(&dense_A, b_.get(), per_solve_options, reference_solution.data());    options.elimination_groups.push_back(num_eliminate_blocks_);    options.elimination_groups.push_back(0);    options.max_num_iterations = num_cols_;    options.preconditioner_type = SCHUR_JACOBI;    IterativeSchurComplementSolver isc(options);    Vector isc_sol(num_cols_);    per_solve_options.r_tolerance = 1e-12;    isc.Solve(A_.get(), b_.get(), per_solve_options, isc_sol.data());    double diff = (isc_sol - reference_solution).norm();    if (diff < kEpsilon) {      return testing::AssertionSuccess();    } else {      return testing::AssertionFailure()             << "The reference solution differs from the ITERATIVE_SCHUR"             << " solution by " << diff << " which is more than " << kEpsilon;    }  }  int num_rows_;  int num_cols_;  int num_eliminate_blocks_;  std::unique_ptr<BlockSparseMatrix> A_;  std::unique_ptr<double[]> b_;  std::unique_ptr<double[]> D_;};TEST_F(IterativeSchurComplementSolverTest, NormalProblem) {  SetUpProblem(2);  EXPECT_TRUE(TestSolver(NULL));  EXPECT_TRUE(TestSolver(D_.get()));}TEST_F(IterativeSchurComplementSolverTest, ProblemWithNoFBlocks) {  SetUpProblem(3);  EXPECT_TRUE(TestSolver(NULL));  EXPECT_TRUE(TestSolver(D_.get()));}}  // namespace internal}  // namespace ceres
 |