| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291 | 
							- // Ceres Solver - A fast non-linear least squares minimizer
 
- // Copyright 2016 Google Inc. All rights reserved.
 
- // http://ceres-solver.org/
 
- //
 
- // Redistribution and use in source and binary forms, with or without
 
- // modification, are permitted provided that the following conditions are met:
 
- //
 
- // * Redistributions of source code must retain the above copyright notice,
 
- //   this list of conditions and the following disclaimer.
 
- // * Redistributions in binary form must reproduce the above copyright notice,
 
- //   this list of conditions and the following disclaimer in the documentation
 
- //   and/or other materials provided with the distribution.
 
- // * Neither the name of Google Inc. nor the names of its contributors may be
 
- //   used to endorse or promote products derived from this software without
 
- //   specific prior written permission.
 
- //
 
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 
- // POSSIBILITY OF SUCH DAMAGE.
 
- //
 
- // Authors: wjr@google.com (William Rucklidge),
 
- //          keir@google.com (Keir Mierle),
 
- //          dgossow@google.com (David Gossow)
 
- #include "ceres/gradient_checker.h"
 
- #include <algorithm>
 
- #include <cmath>
 
- #include <cstdint>
 
- #include <numeric>
 
- #include <string>
 
- #include <vector>
 
- #include "ceres/is_close.h"
 
- #include "ceres/stringprintf.h"
 
- #include "ceres/types.h"
 
- namespace ceres {
 
- using internal::IsClose;
 
- using internal::StringAppendF;
 
- using internal::StringPrintf;
 
- using std::string;
 
- using std::vector;
 
- namespace {
 
- // Evaluate the cost function and transform the returned Jacobians to
 
- // the local space of the respective local parameterizations.
 
- bool EvaluateCostFunction(
 
-     const ceres::CostFunction* function,
 
-     double const* const* parameters,
 
-     const std::vector<const ceres::LocalParameterization*>&
 
-         local_parameterizations,
 
-     Vector* residuals,
 
-     std::vector<Matrix>* jacobians,
 
-     std::vector<Matrix>* local_jacobians) {
 
-   CHECK(residuals != nullptr);
 
-   CHECK(jacobians != nullptr);
 
-   CHECK(local_jacobians != nullptr);
 
-   const vector<int32_t>& block_sizes = function->parameter_block_sizes();
 
-   const int num_parameter_blocks = block_sizes.size();
 
-   // Allocate Jacobian matrices in local space.
 
-   local_jacobians->resize(num_parameter_blocks);
 
-   vector<double*> local_jacobian_data(num_parameter_blocks);
 
-   for (int i = 0; i < num_parameter_blocks; ++i) {
 
-     int block_size = block_sizes.at(i);
 
-     if (local_parameterizations.at(i) != NULL) {
 
-       block_size = local_parameterizations.at(i)->LocalSize();
 
-     }
 
-     local_jacobians->at(i).resize(function->num_residuals(), block_size);
 
-     local_jacobians->at(i).setZero();
 
-     local_jacobian_data.at(i) = local_jacobians->at(i).data();
 
-   }
 
-   // Allocate Jacobian matrices in global space.
 
-   jacobians->resize(num_parameter_blocks);
 
-   vector<double*> jacobian_data(num_parameter_blocks);
 
-   for (int i = 0; i < num_parameter_blocks; ++i) {
 
-     jacobians->at(i).resize(function->num_residuals(), block_sizes.at(i));
 
-     jacobians->at(i).setZero();
 
-     jacobian_data.at(i) = jacobians->at(i).data();
 
-   }
 
-   // Compute residuals & jacobians.
 
-   CHECK_NE(0, function->num_residuals());
 
-   residuals->resize(function->num_residuals());
 
-   residuals->setZero();
 
-   if (!function->Evaluate(
 
-           parameters, residuals->data(), jacobian_data.data())) {
 
-     return false;
 
-   }
 
-   // Convert Jacobians from global to local space.
 
-   for (size_t i = 0; i < local_jacobians->size(); ++i) {
 
-     if (local_parameterizations.at(i) == NULL) {
 
-       local_jacobians->at(i) = jacobians->at(i);
 
-     } else {
 
-       int global_size = local_parameterizations.at(i)->GlobalSize();
 
-       int local_size = local_parameterizations.at(i)->LocalSize();
 
-       CHECK_EQ(jacobians->at(i).cols(), global_size);
 
-       Matrix global_J_local(global_size, local_size);
 
-       local_parameterizations.at(i)->ComputeJacobian(parameters[i],
 
-                                                      global_J_local.data());
 
-       local_jacobians->at(i).noalias() = jacobians->at(i) * global_J_local;
 
-     }
 
-   }
 
-   return true;
 
- }
 
- }  // namespace
 
- GradientChecker::GradientChecker(
 
-     const CostFunction* function,
 
-     const vector<const LocalParameterization*>* local_parameterizations,
 
-     const NumericDiffOptions& options)
 
-     : function_(function) {
 
-   CHECK(function != nullptr);
 
-   if (local_parameterizations != NULL) {
 
-     local_parameterizations_ = *local_parameterizations;
 
-   } else {
 
-     local_parameterizations_.resize(function->parameter_block_sizes().size(),
 
-                                     NULL);
 
-   }
 
-   DynamicNumericDiffCostFunction<CostFunction, RIDDERS>*
 
-       finite_diff_cost_function =
 
-           new DynamicNumericDiffCostFunction<CostFunction, RIDDERS>(
 
-               function, DO_NOT_TAKE_OWNERSHIP, options);
 
-   finite_diff_cost_function_.reset(finite_diff_cost_function);
 
-   const vector<int32_t>& parameter_block_sizes =
 
-       function->parameter_block_sizes();
 
-   const int num_parameter_blocks = parameter_block_sizes.size();
 
-   for (int i = 0; i < num_parameter_blocks; ++i) {
 
-     finite_diff_cost_function->AddParameterBlock(parameter_block_sizes[i]);
 
-   }
 
-   finite_diff_cost_function->SetNumResiduals(function->num_residuals());
 
- }
 
- bool GradientChecker::Probe(double const* const* parameters,
 
-                             double relative_precision,
 
-                             ProbeResults* results_param) const {
 
-   int num_residuals = function_->num_residuals();
 
-   // Make sure that we have a place to store results, no matter if the user has
 
-   // provided an output argument.
 
-   ProbeResults* results;
 
-   ProbeResults results_local;
 
-   if (results_param != NULL) {
 
-     results = results_param;
 
-     results->residuals.resize(0);
 
-     results->jacobians.clear();
 
-     results->numeric_jacobians.clear();
 
-     results->local_jacobians.clear();
 
-     results->local_numeric_jacobians.clear();
 
-     results->error_log.clear();
 
-   } else {
 
-     results = &results_local;
 
-   }
 
-   results->maximum_relative_error = 0.0;
 
-   results->return_value = true;
 
-   // Evaluate the derivative using the user supplied code.
 
-   vector<Matrix>& jacobians = results->jacobians;
 
-   vector<Matrix>& local_jacobians = results->local_jacobians;
 
-   if (!EvaluateCostFunction(function_,
 
-                             parameters,
 
-                             local_parameterizations_,
 
-                             &results->residuals,
 
-                             &jacobians,
 
-                             &local_jacobians)) {
 
-     results->error_log = "Function evaluation with Jacobians failed.";
 
-     results->return_value = false;
 
-   }
 
-   // Evaluate the derivative using numeric derivatives.
 
-   vector<Matrix>& numeric_jacobians = results->numeric_jacobians;
 
-   vector<Matrix>& local_numeric_jacobians = results->local_numeric_jacobians;
 
-   Vector finite_diff_residuals;
 
-   if (!EvaluateCostFunction(finite_diff_cost_function_.get(),
 
-                             parameters,
 
-                             local_parameterizations_,
 
-                             &finite_diff_residuals,
 
-                             &numeric_jacobians,
 
-                             &local_numeric_jacobians)) {
 
-     results->error_log +=
 
-         "\nFunction evaluation with numerical "
 
-         "differentiation failed.";
 
-     results->return_value = false;
 
-   }
 
-   if (!results->return_value) {
 
-     return false;
 
-   }
 
-   for (int i = 0; i < num_residuals; ++i) {
 
-     if (!IsClose(results->residuals[i],
 
-                  finite_diff_residuals[i],
 
-                  relative_precision,
 
-                  NULL,
 
-                  NULL)) {
 
-       results->error_log =
 
-           "Function evaluation with and without Jacobians "
 
-           "resulted in different residuals.";
 
-       LOG(INFO) << results->residuals.transpose();
 
-       LOG(INFO) << finite_diff_residuals.transpose();
 
-       return false;
 
-     }
 
-   }
 
-   // See if any elements have relative error larger than the threshold.
 
-   int num_bad_jacobian_components = 0;
 
-   double& worst_relative_error = results->maximum_relative_error;
 
-   worst_relative_error = 0;
 
-   // Accumulate the error message for all the jacobians, since it won't get
 
-   // output if there are no bad jacobian components.
 
-   string error_log;
 
-   for (int k = 0; k < function_->parameter_block_sizes().size(); k++) {
 
-     StringAppendF(&error_log,
 
-                   "========== "
 
-                   "Jacobian for block %d: (%ld by %ld)) "
 
-                   "==========\n",
 
-                   k,
 
-                   static_cast<long>(local_jacobians[k].rows()),
 
-                   static_cast<long>(local_jacobians[k].cols()));
 
-     // The funny spacing creates appropriately aligned column headers.
 
-     error_log +=
 
-         " block  row  col        user dx/dy    num diff dx/dy         "
 
-         "abs error    relative error         parameter          residual\n";
 
-     for (int i = 0; i < local_jacobians[k].rows(); i++) {
 
-       for (int j = 0; j < local_jacobians[k].cols(); j++) {
 
-         double term_jacobian = local_jacobians[k](i, j);
 
-         double finite_jacobian = local_numeric_jacobians[k](i, j);
 
-         double relative_error, absolute_error;
 
-         bool bad_jacobian_entry = !IsClose(term_jacobian,
 
-                                            finite_jacobian,
 
-                                            relative_precision,
 
-                                            &relative_error,
 
-                                            &absolute_error);
 
-         worst_relative_error = std::max(worst_relative_error, relative_error);
 
-         StringAppendF(&error_log,
 
-                       "%6d %4d %4d %17g %17g %17g %17g %17g %17g",
 
-                       k,
 
-                       i,
 
-                       j,
 
-                       term_jacobian,
 
-                       finite_jacobian,
 
-                       absolute_error,
 
-                       relative_error,
 
-                       parameters[k][j],
 
-                       results->residuals[i]);
 
-         if (bad_jacobian_entry) {
 
-           num_bad_jacobian_components++;
 
-           StringAppendF(&error_log,
 
-                         " ------ (%d,%d,%d) Relative error worse than %g",
 
-                         k,
 
-                         i,
 
-                         j,
 
-                         relative_precision);
 
-         }
 
-         error_log += "\n";
 
-       }
 
-     }
 
-   }
 
-   // Since there were some bad errors, dump comprehensive debug info.
 
-   if (num_bad_jacobian_components) {
 
-     string header = StringPrintf(
 
-         "\nDetected %d bad Jacobian component(s). "
 
-         "Worst relative error was %g.\n",
 
-         num_bad_jacobian_components,
 
-         worst_relative_error);
 
-     results->error_log = header + "\n" + error_log;
 
-     return false;
 
-   }
 
-   return true;
 
- }
 
- }  // namespace ceres
 
 
  |