| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603 | 
							- // Ceres Solver - A fast non-linear least squares minimizer
 
- // Copyright 2015 Google Inc. All rights reserved.
 
- // http://ceres-solver.org/
 
- //
 
- // Redistribution and use in source and binary forms, with or without
 
- // modification, are permitted provided that the following conditions are met:
 
- //
 
- // * Redistributions of source code must retain the above copyright notice,
 
- //   this list of conditions and the following disclaimer.
 
- // * Redistributions in binary form must reproduce the above copyright notice,
 
- //   this list of conditions and the following disclaimer in the documentation
 
- //   and/or other materials provided with the distribution.
 
- // * Neither the name of Google Inc. nor the names of its contributors may be
 
- //   used to endorse or promote products derived from this software without
 
- //   specific prior written permission.
 
- //
 
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 
- // POSSIBILITY OF SUCH DAMAGE.
 
- //
 
- // Author: sameeragarwal@google.com (Sameer Agarwal)
 
- #include "ceres/compressed_row_sparse_matrix.h"
 
- #include <memory>
 
- #include <numeric>
 
- #include "Eigen/SparseCore"
 
- #include "ceres/casts.h"
 
- #include "ceres/crs_matrix.h"
 
- #include "ceres/internal/eigen.h"
 
- #include "ceres/linear_least_squares_problems.h"
 
- #include "ceres/random.h"
 
- #include "ceres/triplet_sparse_matrix.h"
 
- #include "glog/logging.h"
 
- #include "gtest/gtest.h"
 
- namespace ceres {
 
- namespace internal {
 
- using std::vector;
 
- static void CompareMatrices(const SparseMatrix* a, const SparseMatrix* b) {
 
-   EXPECT_EQ(a->num_rows(), b->num_rows());
 
-   EXPECT_EQ(a->num_cols(), b->num_cols());
 
-   int num_rows = a->num_rows();
 
-   int num_cols = a->num_cols();
 
-   for (int i = 0; i < num_cols; ++i) {
 
-     Vector x = Vector::Zero(num_cols);
 
-     x(i) = 1.0;
 
-     Vector y_a = Vector::Zero(num_rows);
 
-     Vector y_b = Vector::Zero(num_rows);
 
-     a->RightMultiply(x.data(), y_a.data());
 
-     b->RightMultiply(x.data(), y_b.data());
 
-     EXPECT_EQ((y_a - y_b).norm(), 0);
 
-   }
 
- }
 
- class CompressedRowSparseMatrixTest : public ::testing::Test {
 
-  protected:
 
-   void SetUp() final {
 
-     std::unique_ptr<LinearLeastSquaresProblem> problem(
 
-         CreateLinearLeastSquaresProblemFromId(1));
 
-     CHECK(problem != nullptr);
 
-     tsm.reset(down_cast<TripletSparseMatrix*>(problem->A.release()));
 
-     crsm.reset(CompressedRowSparseMatrix::FromTripletSparseMatrix(*tsm));
 
-     num_rows = tsm->num_rows();
 
-     num_cols = tsm->num_cols();
 
-     vector<int>* row_blocks = crsm->mutable_row_blocks();
 
-     row_blocks->resize(num_rows);
 
-     std::fill(row_blocks->begin(), row_blocks->end(), 1);
 
-     vector<int>* col_blocks = crsm->mutable_col_blocks();
 
-     col_blocks->resize(num_cols);
 
-     std::fill(col_blocks->begin(), col_blocks->end(), 1);
 
-   }
 
-   int num_rows;
 
-   int num_cols;
 
-   std::unique_ptr<TripletSparseMatrix> tsm;
 
-   std::unique_ptr<CompressedRowSparseMatrix> crsm;
 
- };
 
- TEST_F(CompressedRowSparseMatrixTest, Scale) {
 
-   Vector scale(num_cols);
 
-   for (int i = 0; i < num_cols; ++i) {
 
-     scale(i) = i + 1;
 
-   }
 
-   tsm->ScaleColumns(scale.data());
 
-   crsm->ScaleColumns(scale.data());
 
-   CompareMatrices(tsm.get(), crsm.get());
 
- }
 
- TEST_F(CompressedRowSparseMatrixTest, DeleteRows) {
 
-   // Clear the row and column blocks as these are purely scalar tests.
 
-   crsm->mutable_row_blocks()->clear();
 
-   crsm->mutable_col_blocks()->clear();
 
-   for (int i = 0; i < num_rows; ++i) {
 
-     tsm->Resize(num_rows - i, num_cols);
 
-     crsm->DeleteRows(crsm->num_rows() - tsm->num_rows());
 
-     CompareMatrices(tsm.get(), crsm.get());
 
-   }
 
- }
 
- TEST_F(CompressedRowSparseMatrixTest, AppendRows) {
 
-   // Clear the row and column blocks as these are purely scalar tests.
 
-   crsm->mutable_row_blocks()->clear();
 
-   crsm->mutable_col_blocks()->clear();
 
-   for (int i = 0; i < num_rows; ++i) {
 
-     TripletSparseMatrix tsm_appendage(*tsm);
 
-     tsm_appendage.Resize(i, num_cols);
 
-     tsm->AppendRows(tsm_appendage);
 
-     std::unique_ptr<CompressedRowSparseMatrix> crsm_appendage(
 
-         CompressedRowSparseMatrix::FromTripletSparseMatrix(tsm_appendage));
 
-     crsm->AppendRows(*crsm_appendage);
 
-     CompareMatrices(tsm.get(), crsm.get());
 
-   }
 
- }
 
- TEST_F(CompressedRowSparseMatrixTest, AppendAndDeleteBlockDiagonalMatrix) {
 
-   int num_diagonal_rows = crsm->num_cols();
 
-   std::unique_ptr<double[]> diagonal(new double[num_diagonal_rows]);
 
-   for (int i = 0; i < num_diagonal_rows; ++i) {
 
-     diagonal[i] = i;
 
-   }
 
-   vector<int> row_and_column_blocks;
 
-   row_and_column_blocks.push_back(1);
 
-   row_and_column_blocks.push_back(2);
 
-   row_and_column_blocks.push_back(2);
 
-   const vector<int> pre_row_blocks = crsm->row_blocks();
 
-   const vector<int> pre_col_blocks = crsm->col_blocks();
 
-   std::unique_ptr<CompressedRowSparseMatrix> appendage(
 
-       CompressedRowSparseMatrix::CreateBlockDiagonalMatrix(
 
-           diagonal.get(), row_and_column_blocks));
 
-   crsm->AppendRows(*appendage);
 
-   const vector<int> post_row_blocks = crsm->row_blocks();
 
-   const vector<int> post_col_blocks = crsm->col_blocks();
 
-   vector<int> expected_row_blocks = pre_row_blocks;
 
-   expected_row_blocks.insert(expected_row_blocks.end(),
 
-                              row_and_column_blocks.begin(),
 
-                              row_and_column_blocks.end());
 
-   vector<int> expected_col_blocks = pre_col_blocks;
 
-   EXPECT_EQ(expected_row_blocks, crsm->row_blocks());
 
-   EXPECT_EQ(expected_col_blocks, crsm->col_blocks());
 
-   crsm->DeleteRows(num_diagonal_rows);
 
-   EXPECT_EQ(crsm->row_blocks(), pre_row_blocks);
 
-   EXPECT_EQ(crsm->col_blocks(), pre_col_blocks);
 
- }
 
- TEST_F(CompressedRowSparseMatrixTest, ToDenseMatrix) {
 
-   Matrix tsm_dense;
 
-   Matrix crsm_dense;
 
-   tsm->ToDenseMatrix(&tsm_dense);
 
-   crsm->ToDenseMatrix(&crsm_dense);
 
-   EXPECT_EQ((tsm_dense - crsm_dense).norm(), 0.0);
 
- }
 
- TEST_F(CompressedRowSparseMatrixTest, ToCRSMatrix) {
 
-   CRSMatrix crs_matrix;
 
-   crsm->ToCRSMatrix(&crs_matrix);
 
-   EXPECT_EQ(crsm->num_rows(), crs_matrix.num_rows);
 
-   EXPECT_EQ(crsm->num_cols(), crs_matrix.num_cols);
 
-   EXPECT_EQ(crsm->num_rows() + 1, crs_matrix.rows.size());
 
-   EXPECT_EQ(crsm->num_nonzeros(), crs_matrix.cols.size());
 
-   EXPECT_EQ(crsm->num_nonzeros(), crs_matrix.values.size());
 
-   for (int i = 0; i < crsm->num_rows() + 1; ++i) {
 
-     EXPECT_EQ(crsm->rows()[i], crs_matrix.rows[i]);
 
-   }
 
-   for (int i = 0; i < crsm->num_nonzeros(); ++i) {
 
-     EXPECT_EQ(crsm->cols()[i], crs_matrix.cols[i]);
 
-     EXPECT_EQ(crsm->values()[i], crs_matrix.values[i]);
 
-   }
 
- }
 
- TEST(CompressedRowSparseMatrix, CreateBlockDiagonalMatrix) {
 
-   vector<int> blocks;
 
-   blocks.push_back(1);
 
-   blocks.push_back(2);
 
-   blocks.push_back(2);
 
-   Vector diagonal(5);
 
-   for (int i = 0; i < 5; ++i) {
 
-     diagonal(i) = i + 1;
 
-   }
 
-   std::unique_ptr<CompressedRowSparseMatrix> matrix(
 
-       CompressedRowSparseMatrix::CreateBlockDiagonalMatrix(diagonal.data(),
 
-                                                            blocks));
 
-   EXPECT_EQ(matrix->num_rows(), 5);
 
-   EXPECT_EQ(matrix->num_cols(), 5);
 
-   EXPECT_EQ(matrix->num_nonzeros(), 9);
 
-   EXPECT_EQ(blocks, matrix->row_blocks());
 
-   EXPECT_EQ(blocks, matrix->col_blocks());
 
-   Vector x(5);
 
-   Vector y(5);
 
-   x.setOnes();
 
-   y.setZero();
 
-   matrix->RightMultiply(x.data(), y.data());
 
-   for (int i = 0; i < diagonal.size(); ++i) {
 
-     EXPECT_EQ(y[i], diagonal[i]);
 
-   }
 
-   y.setZero();
 
-   matrix->LeftMultiply(x.data(), y.data());
 
-   for (int i = 0; i < diagonal.size(); ++i) {
 
-     EXPECT_EQ(y[i], diagonal[i]);
 
-   }
 
-   Matrix dense;
 
-   matrix->ToDenseMatrix(&dense);
 
-   EXPECT_EQ((dense.diagonal() - diagonal).norm(), 0.0);
 
- }
 
- TEST(CompressedRowSparseMatrix, Transpose) {
 
-   //  0  1  0  2  3  0
 
-   //  4  6  7  0  0  8
 
-   //  9 10  0 11 12  0
 
-   // 13  0 14 15  9  0
 
-   //  0 16 17  0  0  0
 
-   // Block structure:
 
-   //  A  A  A  A  B  B
 
-   //  A  A  A  A  B  B
 
-   //  A  A  A  A  B  B
 
-   //  C  C  C  C  D  D
 
-   //  C  C  C  C  D  D
 
-   //  C  C  C  C  D  D
 
-   CompressedRowSparseMatrix matrix(5, 6, 30);
 
-   int* rows = matrix.mutable_rows();
 
-   int* cols = matrix.mutable_cols();
 
-   double* values = matrix.mutable_values();
 
-   matrix.mutable_row_blocks()->push_back(3);
 
-   matrix.mutable_row_blocks()->push_back(3);
 
-   matrix.mutable_col_blocks()->push_back(4);
 
-   matrix.mutable_col_blocks()->push_back(2);
 
-   rows[0] = 0;
 
-   cols[0] = 1;
 
-   cols[1] = 3;
 
-   cols[2] = 4;
 
-   rows[1] = 3;
 
-   cols[3] = 0;
 
-   cols[4] = 1;
 
-   cols[5] = 2;
 
-   cols[6] = 5;
 
-   rows[2] = 7;
 
-   cols[7] = 0;
 
-   cols[8] = 1;
 
-   cols[9] = 3;
 
-   cols[10] = 4;
 
-   rows[3] = 11;
 
-   cols[11] = 0;
 
-   cols[12] = 2;
 
-   cols[13] = 3;
 
-   cols[14] = 4;
 
-   rows[4] = 15;
 
-   cols[15] = 1;
 
-   cols[16] = 2;
 
-   rows[5] = 17;
 
-   std::copy(values, values + 17, cols);
 
-   std::unique_ptr<CompressedRowSparseMatrix> transpose(matrix.Transpose());
 
-   ASSERT_EQ(transpose->row_blocks().size(), matrix.col_blocks().size());
 
-   for (int i = 0; i < transpose->row_blocks().size(); ++i) {
 
-     EXPECT_EQ(transpose->row_blocks()[i], matrix.col_blocks()[i]);
 
-   }
 
-   ASSERT_EQ(transpose->col_blocks().size(), matrix.row_blocks().size());
 
-   for (int i = 0; i < transpose->col_blocks().size(); ++i) {
 
-     EXPECT_EQ(transpose->col_blocks()[i], matrix.row_blocks()[i]);
 
-   }
 
-   Matrix dense_matrix;
 
-   matrix.ToDenseMatrix(&dense_matrix);
 
-   Matrix dense_transpose;
 
-   transpose->ToDenseMatrix(&dense_transpose);
 
-   EXPECT_NEAR((dense_matrix - dense_transpose.transpose()).norm(), 0.0, 1e-14);
 
- }
 
- TEST(CompressedRowSparseMatrix, FromTripletSparseMatrix) {
 
-   TripletSparseMatrix::RandomMatrixOptions options;
 
-   options.num_rows = 5;
 
-   options.num_cols = 7;
 
-   options.density = 0.5;
 
-   const int kNumTrials = 10;
 
-   for (int i = 0; i < kNumTrials; ++i) {
 
-     std::unique_ptr<TripletSparseMatrix> tsm(
 
-         TripletSparseMatrix::CreateRandomMatrix(options));
 
-     std::unique_ptr<CompressedRowSparseMatrix> crsm(
 
-         CompressedRowSparseMatrix::FromTripletSparseMatrix(*tsm));
 
-     Matrix expected;
 
-     tsm->ToDenseMatrix(&expected);
 
-     Matrix actual;
 
-     crsm->ToDenseMatrix(&actual);
 
-     EXPECT_NEAR((expected - actual).norm() / actual.norm(),
 
-                 0.0,
 
-                 std::numeric_limits<double>::epsilon())
 
-         << "\nexpected: \n"
 
-         << expected << "\nactual: \n"
 
-         << actual;
 
-   }
 
- }
 
- TEST(CompressedRowSparseMatrix, FromTripletSparseMatrixTransposed) {
 
-   TripletSparseMatrix::RandomMatrixOptions options;
 
-   options.num_rows = 5;
 
-   options.num_cols = 7;
 
-   options.density = 0.5;
 
-   const int kNumTrials = 10;
 
-   for (int i = 0; i < kNumTrials; ++i) {
 
-     std::unique_ptr<TripletSparseMatrix> tsm(
 
-         TripletSparseMatrix::CreateRandomMatrix(options));
 
-     std::unique_ptr<CompressedRowSparseMatrix> crsm(
 
-         CompressedRowSparseMatrix::FromTripletSparseMatrixTransposed(*tsm));
 
-     Matrix tmp;
 
-     tsm->ToDenseMatrix(&tmp);
 
-     Matrix expected = tmp.transpose();
 
-     Matrix actual;
 
-     crsm->ToDenseMatrix(&actual);
 
-     EXPECT_NEAR((expected - actual).norm() / actual.norm(),
 
-                 0.0,
 
-                 std::numeric_limits<double>::epsilon())
 
-         << "\nexpected: \n"
 
-         << expected << "\nactual: \n"
 
-         << actual;
 
-   }
 
- }
 
- typedef ::testing::tuple<CompressedRowSparseMatrix::StorageType> Param;
 
- static std::string ParamInfoToString(testing::TestParamInfo<Param> info) {
 
-   if (::testing::get<0>(info.param) ==
 
-       CompressedRowSparseMatrix::UPPER_TRIANGULAR) {
 
-     return "UPPER";
 
-   }
 
-   if (::testing::get<0>(info.param) ==
 
-       CompressedRowSparseMatrix::LOWER_TRIANGULAR) {
 
-     return "LOWER";
 
-   }
 
-   return "UNSYMMETRIC";
 
- }
 
- class RightMultiplyTest : public ::testing::TestWithParam<Param> {};
 
- TEST_P(RightMultiplyTest, _) {
 
-   const int kMinNumBlocks = 1;
 
-   const int kMaxNumBlocks = 10;
 
-   const int kMinBlockSize = 1;
 
-   const int kMaxBlockSize = 5;
 
-   const int kNumTrials = 10;
 
-   for (int num_blocks = kMinNumBlocks; num_blocks < kMaxNumBlocks;
 
-        ++num_blocks) {
 
-     for (int trial = 0; trial < kNumTrials; ++trial) {
 
-       Param param = GetParam();
 
-       CompressedRowSparseMatrix::RandomMatrixOptions options;
 
-       options.num_col_blocks = num_blocks;
 
-       options.min_col_block_size = kMinBlockSize;
 
-       options.max_col_block_size = kMaxBlockSize;
 
-       options.num_row_blocks = 2 * num_blocks;
 
-       options.min_row_block_size = kMinBlockSize;
 
-       options.max_row_block_size = kMaxBlockSize;
 
-       options.block_density = std::max(0.5, RandDouble());
 
-       options.storage_type = ::testing::get<0>(param);
 
-       std::unique_ptr<CompressedRowSparseMatrix> matrix(
 
-           CompressedRowSparseMatrix::CreateRandomMatrix(options));
 
-       const int num_rows = matrix->num_rows();
 
-       const int num_cols = matrix->num_cols();
 
-       Vector x(num_cols);
 
-       x.setRandom();
 
-       Vector actual_y(num_rows);
 
-       actual_y.setZero();
 
-       matrix->RightMultiply(x.data(), actual_y.data());
 
-       Matrix dense;
 
-       matrix->ToDenseMatrix(&dense);
 
-       Vector expected_y;
 
-       if (::testing::get<0>(param) ==
 
-           CompressedRowSparseMatrix::UPPER_TRIANGULAR) {
 
-         expected_y = dense.selfadjointView<Eigen::Upper>() * x;
 
-       } else if (::testing::get<0>(param) ==
 
-                  CompressedRowSparseMatrix::LOWER_TRIANGULAR) {
 
-         expected_y = dense.selfadjointView<Eigen::Lower>() * x;
 
-       } else {
 
-         expected_y = dense * x;
 
-       }
 
-       ASSERT_NEAR((expected_y - actual_y).norm() / actual_y.norm(),
 
-                   0.0,
 
-                   std::numeric_limits<double>::epsilon() * 10)
 
-           << "\n"
 
-           << dense << "x:\n"
 
-           << x.transpose() << "\n"
 
-           << "expected: \n"
 
-           << expected_y.transpose() << "\n"
 
-           << "actual: \n"
 
-           << actual_y.transpose();
 
-     }
 
-   }
 
- }
 
- INSTANTIATE_TEST_SUITE_P(
 
-     CompressedRowSparseMatrix,
 
-     RightMultiplyTest,
 
-     ::testing::Values(CompressedRowSparseMatrix::LOWER_TRIANGULAR,
 
-                       CompressedRowSparseMatrix::UPPER_TRIANGULAR,
 
-                       CompressedRowSparseMatrix::UNSYMMETRIC),
 
-     ParamInfoToString);
 
- class LeftMultiplyTest : public ::testing::TestWithParam<Param> {};
 
- TEST_P(LeftMultiplyTest, _) {
 
-   const int kMinNumBlocks = 1;
 
-   const int kMaxNumBlocks = 10;
 
-   const int kMinBlockSize = 1;
 
-   const int kMaxBlockSize = 5;
 
-   const int kNumTrials = 10;
 
-   for (int num_blocks = kMinNumBlocks; num_blocks < kMaxNumBlocks;
 
-        ++num_blocks) {
 
-     for (int trial = 0; trial < kNumTrials; ++trial) {
 
-       Param param = GetParam();
 
-       CompressedRowSparseMatrix::RandomMatrixOptions options;
 
-       options.num_col_blocks = num_blocks;
 
-       options.min_col_block_size = kMinBlockSize;
 
-       options.max_col_block_size = kMaxBlockSize;
 
-       options.num_row_blocks = 2 * num_blocks;
 
-       options.min_row_block_size = kMinBlockSize;
 
-       options.max_row_block_size = kMaxBlockSize;
 
-       options.block_density = std::max(0.5, RandDouble());
 
-       options.storage_type = ::testing::get<0>(param);
 
-       std::unique_ptr<CompressedRowSparseMatrix> matrix(
 
-           CompressedRowSparseMatrix::CreateRandomMatrix(options));
 
-       const int num_rows = matrix->num_rows();
 
-       const int num_cols = matrix->num_cols();
 
-       Vector x(num_rows);
 
-       x.setRandom();
 
-       Vector actual_y(num_cols);
 
-       actual_y.setZero();
 
-       matrix->LeftMultiply(x.data(), actual_y.data());
 
-       Matrix dense;
 
-       matrix->ToDenseMatrix(&dense);
 
-       Vector expected_y;
 
-       if (::testing::get<0>(param) ==
 
-           CompressedRowSparseMatrix::UPPER_TRIANGULAR) {
 
-         expected_y = dense.selfadjointView<Eigen::Upper>() * x;
 
-       } else if (::testing::get<0>(param) ==
 
-                  CompressedRowSparseMatrix::LOWER_TRIANGULAR) {
 
-         expected_y = dense.selfadjointView<Eigen::Lower>() * x;
 
-       } else {
 
-         expected_y = dense.transpose() * x;
 
-       }
 
-       ASSERT_NEAR((expected_y - actual_y).norm() / actual_y.norm(),
 
-                   0.0,
 
-                   std::numeric_limits<double>::epsilon() * 10)
 
-           << "\n"
 
-           << dense << "x\n"
 
-           << x.transpose() << "\n"
 
-           << "expected: \n"
 
-           << expected_y.transpose() << "\n"
 
-           << "actual: \n"
 
-           << actual_y.transpose();
 
-     }
 
-   }
 
- }
 
- INSTANTIATE_TEST_SUITE_P(
 
-     CompressedRowSparseMatrix,
 
-     LeftMultiplyTest,
 
-     ::testing::Values(CompressedRowSparseMatrix::LOWER_TRIANGULAR,
 
-                       CompressedRowSparseMatrix::UPPER_TRIANGULAR,
 
-                       CompressedRowSparseMatrix::UNSYMMETRIC),
 
-     ParamInfoToString);
 
- class SquaredColumnNormTest : public ::testing::TestWithParam<Param> {};
 
- TEST_P(SquaredColumnNormTest, _) {
 
-   const int kMinNumBlocks = 1;
 
-   const int kMaxNumBlocks = 10;
 
-   const int kMinBlockSize = 1;
 
-   const int kMaxBlockSize = 5;
 
-   const int kNumTrials = 10;
 
-   for (int num_blocks = kMinNumBlocks; num_blocks < kMaxNumBlocks;
 
-        ++num_blocks) {
 
-     for (int trial = 0; trial < kNumTrials; ++trial) {
 
-       Param param = GetParam();
 
-       CompressedRowSparseMatrix::RandomMatrixOptions options;
 
-       options.num_col_blocks = num_blocks;
 
-       options.min_col_block_size = kMinBlockSize;
 
-       options.max_col_block_size = kMaxBlockSize;
 
-       options.num_row_blocks = 2 * num_blocks;
 
-       options.min_row_block_size = kMinBlockSize;
 
-       options.max_row_block_size = kMaxBlockSize;
 
-       options.block_density = std::max(0.5, RandDouble());
 
-       options.storage_type = ::testing::get<0>(param);
 
-       std::unique_ptr<CompressedRowSparseMatrix> matrix(
 
-           CompressedRowSparseMatrix::CreateRandomMatrix(options));
 
-       const int num_cols = matrix->num_cols();
 
-       Vector actual(num_cols);
 
-       actual.setZero();
 
-       matrix->SquaredColumnNorm(actual.data());
 
-       Matrix dense;
 
-       matrix->ToDenseMatrix(&dense);
 
-       Vector expected;
 
-       if (::testing::get<0>(param) ==
 
-           CompressedRowSparseMatrix::UPPER_TRIANGULAR) {
 
-         const Matrix full = dense.selfadjointView<Eigen::Upper>();
 
-         expected = full.colwise().squaredNorm();
 
-       } else if (::testing::get<0>(param) ==
 
-                  CompressedRowSparseMatrix::LOWER_TRIANGULAR) {
 
-         const Matrix full = dense.selfadjointView<Eigen::Lower>();
 
-         expected = full.colwise().squaredNorm();
 
-       } else {
 
-         expected = dense.colwise().squaredNorm();
 
-       }
 
-       ASSERT_NEAR((expected - actual).norm() / actual.norm(),
 
-                   0.0,
 
-                   std::numeric_limits<double>::epsilon() * 10)
 
-           << "\n"
 
-           << dense << "expected: \n"
 
-           << expected.transpose() << "\n"
 
-           << "actual: \n"
 
-           << actual.transpose();
 
-     }
 
-   }
 
- }
 
- INSTANTIATE_TEST_SUITE_P(
 
-     CompressedRowSparseMatrix,
 
-     SquaredColumnNormTest,
 
-     ::testing::Values(CompressedRowSparseMatrix::LOWER_TRIANGULAR,
 
-                       CompressedRowSparseMatrix::UPPER_TRIANGULAR,
 
-                       CompressedRowSparseMatrix::UNSYMMETRIC),
 
-     ParamInfoToString);
 
- // TODO(sameeragarwal) Add tests for the random matrix creation methods.
 
- }  // namespace internal
 
- }  // namespace ceres
 
 
  |