| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185 | 
							- // Ceres Solver - A fast non-linear least squares minimizer
 
- // Copyright 2015 Google Inc. All rights reserved.
 
- // http://ceres-solver.org/
 
- //
 
- // Redistribution and use in source and binary forms, with or without
 
- // modification, are permitted provided that the following conditions are met:
 
- //
 
- // * Redistributions of source code must retain the above copyright notice,
 
- //   this list of conditions and the following disclaimer.
 
- // * Redistributions in binary form must reproduce the above copyright notice,
 
- //   this list of conditions and the following disclaimer in the documentation
 
- //   and/or other materials provided with the distribution.
 
- // * Neither the name of Google Inc. nor the names of its contributors may be
 
- //   used to endorse or promote products derived from this software without
 
- //   specific prior written permission.
 
- //
 
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 
- // POSSIBILITY OF SUCH DAMAGE.
 
- //
 
- // Author: sameeragarwal@google.com (Sameer Agarwal)
 
- #include "ceres/block_random_access_sparse_matrix.h"
 
- #include <algorithm>
 
- #include <memory>
 
- #include <set>
 
- #include <utility>
 
- #include <vector>
 
- #include "ceres/internal/port.h"
 
- #include "ceres/triplet_sparse_matrix.h"
 
- #include "ceres/types.h"
 
- #include "glog/logging.h"
 
- namespace ceres {
 
- namespace internal {
 
- using std::make_pair;
 
- using std::pair;
 
- using std::set;
 
- using std::vector;
 
- BlockRandomAccessSparseMatrix::BlockRandomAccessSparseMatrix(
 
-     const vector<int>& blocks, const set<pair<int, int>>& block_pairs)
 
-     : kMaxRowBlocks(10 * 1000 * 1000), blocks_(blocks) {
 
-   CHECK_LT(blocks.size(), kMaxRowBlocks);
 
-   // Build the row/column layout vector and count the number of scalar
 
-   // rows/columns.
 
-   int num_cols = 0;
 
-   block_positions_.reserve(blocks_.size());
 
-   for (int i = 0; i < blocks_.size(); ++i) {
 
-     block_positions_.push_back(num_cols);
 
-     num_cols += blocks_[i];
 
-   }
 
-   // Count the number of scalar non-zero entries and build the layout
 
-   // object for looking into the values array of the
 
-   // TripletSparseMatrix.
 
-   int num_nonzeros = 0;
 
-   for (const auto& block_pair : block_pairs) {
 
-     const int row_block_size = blocks_[block_pair.first];
 
-     const int col_block_size = blocks_[block_pair.second];
 
-     num_nonzeros += row_block_size * col_block_size;
 
-   }
 
-   VLOG(1) << "Matrix Size [" << num_cols << "," << num_cols << "] "
 
-           << num_nonzeros;
 
-   tsm_.reset(new TripletSparseMatrix(num_cols, num_cols, num_nonzeros));
 
-   tsm_->set_num_nonzeros(num_nonzeros);
 
-   int* rows = tsm_->mutable_rows();
 
-   int* cols = tsm_->mutable_cols();
 
-   double* values = tsm_->mutable_values();
 
-   int pos = 0;
 
-   for (const auto& block_pair : block_pairs) {
 
-     const int row_block_size = blocks_[block_pair.first];
 
-     const int col_block_size = blocks_[block_pair.second];
 
-     cell_values_.push_back(make_pair(block_pair, values + pos));
 
-     layout_[IntPairToLong(block_pair.first, block_pair.second)] =
 
-         new CellInfo(values + pos);
 
-     pos += row_block_size * col_block_size;
 
-   }
 
-   // Fill the sparsity pattern of the underlying matrix.
 
-   for (const auto& block_pair : block_pairs) {
 
-     const int row_block_id = block_pair.first;
 
-     const int col_block_id = block_pair.second;
 
-     const int row_block_size = blocks_[row_block_id];
 
-     const int col_block_size = blocks_[col_block_id];
 
-     int pos =
 
-         layout_[IntPairToLong(row_block_id, col_block_id)]->values - values;
 
-     for (int r = 0; r < row_block_size; ++r) {
 
-       for (int c = 0; c < col_block_size; ++c, ++pos) {
 
-         rows[pos] = block_positions_[row_block_id] + r;
 
-         cols[pos] = block_positions_[col_block_id] + c;
 
-         values[pos] = 1.0;
 
-         DCHECK_LT(rows[pos], tsm_->num_rows());
 
-         DCHECK_LT(cols[pos], tsm_->num_rows());
 
-       }
 
-     }
 
-   }
 
- }
 
- // Assume that the user does not hold any locks on any cell blocks
 
- // when they are calling SetZero.
 
- BlockRandomAccessSparseMatrix::~BlockRandomAccessSparseMatrix() {
 
-   for (const auto& entry : layout_) {
 
-     delete entry.second;
 
-   }
 
- }
 
- CellInfo* BlockRandomAccessSparseMatrix::GetCell(int row_block_id,
 
-                                                  int col_block_id,
 
-                                                  int* row,
 
-                                                  int* col,
 
-                                                  int* row_stride,
 
-                                                  int* col_stride) {
 
-   const LayoutType::iterator it =
 
-       layout_.find(IntPairToLong(row_block_id, col_block_id));
 
-   if (it == layout_.end()) {
 
-     return NULL;
 
-   }
 
-   // Each cell is stored contiguously as its own little dense matrix.
 
-   *row = 0;
 
-   *col = 0;
 
-   *row_stride = blocks_[row_block_id];
 
-   *col_stride = blocks_[col_block_id];
 
-   return it->second;
 
- }
 
- // Assume that the user does not hold any locks on any cell blocks
 
- // when they are calling SetZero.
 
- void BlockRandomAccessSparseMatrix::SetZero() {
 
-   if (tsm_->num_nonzeros()) {
 
-     VectorRef(tsm_->mutable_values(), tsm_->num_nonzeros()).setZero();
 
-   }
 
- }
 
- void BlockRandomAccessSparseMatrix::SymmetricRightMultiply(const double* x,
 
-                                                            double* y) const {
 
-   for (const auto& cell_position_and_data : cell_values_) {
 
-     const int row = cell_position_and_data.first.first;
 
-     const int row_block_size = blocks_[row];
 
-     const int row_block_pos = block_positions_[row];
 
-     const int col = cell_position_and_data.first.second;
 
-     const int col_block_size = blocks_[col];
 
-     const int col_block_pos = block_positions_[col];
 
-     MatrixVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>(
 
-         cell_position_and_data.second,
 
-         row_block_size,
 
-         col_block_size,
 
-         x + col_block_pos,
 
-         y + row_block_pos);
 
-     // Since the matrix is symmetric, but only the upper triangular
 
-     // part is stored, if the block being accessed is not a diagonal
 
-     // block, then use the same block to do the corresponding lower
 
-     // triangular multiply also.
 
-     if (row != col) {
 
-       MatrixTransposeVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>(
 
-           cell_position_and_data.second,
 
-           row_block_size,
 
-           col_block_size,
 
-           x + row_block_pos,
 
-           y + col_block_pos);
 
-     }
 
-   }
 
- }
 
- }  // namespace internal
 
- }  // namespace ceres
 
 
  |