| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2019 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: mierle@gmail.com (Keir Mierle)//// WARNING WARNING WARNING// WARNING WARNING WARNING  Tiny solver is experimental and will change.// WARNING WARNING WARNING#ifndef CERES_PUBLIC_TINY_SOLVER_AUTODIFF_FUNCTION_H_#define CERES_PUBLIC_TINY_SOLVER_AUTODIFF_FUNCTION_H_#include <memory>#include <type_traits>#include "Eigen/Core"#include "ceres/jet.h"#include "ceres/types.h"  // For kImpossibleValue.namespace ceres {// An adapter around autodiff-style CostFunctors to enable easier use of// TinySolver. See the example below showing how to use it:////   // Example for cost functor with static residual size.//   // Same as an autodiff cost functor, but taking only 1 parameter.//   struct MyFunctor {//     template<typename T>//     bool operator()(const T* const parameters, T* residuals) const {//       const T& x = parameters[0];//       const T& y = parameters[1];//       const T& z = parameters[2];//       residuals[0] = x + 2.*y + 4.*z;//       residuals[1] = y * z;//       return true;//     }//   };////   typedef TinySolverAutoDiffFunction<MyFunctor, 2, 3>//       AutoDiffFunction;////   MyFunctor my_functor;//   AutoDiffFunction f(my_functor);////   Vec3 x = ...;//   TinySolver<AutoDiffFunction> solver;//   solver.Solve(f, &x);////   // Example for cost functor with dynamic residual size.//   // NumResiduals() supplies dynamic size of residuals.//   // Same functionality as in tiny_solver.h but with autodiff.//   struct MyFunctorWithDynamicResiduals {//     int NumResiduals() const {//       return 2;//     }////     template<typename T>//     bool operator()(const T* const parameters, T* residuals) const {//       const T& x = parameters[0];//       const T& y = parameters[1];//       const T& z = parameters[2];//       residuals[0] = x + static_cast<T>(2.)*y + static_cast<T>(4.)*z;//       residuals[1] = y * z;//       return true;//     }//   };////   typedef TinySolverAutoDiffFunction<MyFunctorWithDynamicResiduals,//                                      Eigen::Dynamic,//                                      3>//       AutoDiffFunctionWithDynamicResiduals;////   MyFunctorWithDynamicResiduals my_functor_dyn;//   AutoDiffFunctionWithDynamicResiduals f(my_functor_dyn);////   Vec3 x = ...;//   TinySolver<AutoDiffFunctionWithDynamicResiduals> solver;//   solver.Solve(f, &x);//// WARNING: The cost function adapter is not thread safe.template <typename CostFunctor,          int kNumResiduals,          int kNumParameters,          typename T = double>class TinySolverAutoDiffFunction { public:  // This class needs to have an Eigen aligned operator new as it contains  // as a member a Jet type, which itself has a fixed-size Eigen type as member.  EIGEN_MAKE_ALIGNED_OPERATOR_NEW  TinySolverAutoDiffFunction(const CostFunctor& cost_functor)      : cost_functor_(cost_functor) {    Initialize<kNumResiduals>(cost_functor);  }  typedef T Scalar;  enum {    NUM_PARAMETERS = kNumParameters,    NUM_RESIDUALS = kNumResiduals,  };  // This is similar to AutoDifferentiate(), but since there is only one  // parameter block it is easier to inline to avoid overhead.  bool operator()(const T* parameters, T* residuals, T* jacobian) const {    if (jacobian == NULL) {      // No jacobian requested, so just directly call the cost function with      // doubles, skipping jets and derivatives.      return cost_functor_(parameters, residuals);    }    // Initialize the input jets with passed parameters.    for (int i = 0; i < kNumParameters; ++i) {      jet_parameters_[i].a = parameters[i];  // Scalar part.      jet_parameters_[i].v.setZero();        // Derivative part.      jet_parameters_[i].v[i] = T(1.0);    }    // Initialize the output jets such that we can detect user errors.    for (int i = 0; i < num_residuals_; ++i) {      jet_residuals_[i].a = kImpossibleValue;      jet_residuals_[i].v.setConstant(kImpossibleValue);    }    // Execute the cost function, but with jets to find the derivative.    if (!cost_functor_(jet_parameters_, jet_residuals_.data())) {      return false;    }    // Copy the jacobian out of the derivative part of the residual jets.    Eigen::Map<Eigen::Matrix<T, kNumResiduals, kNumParameters>> jacobian_matrix(        jacobian, num_residuals_, kNumParameters);    for (int r = 0; r < num_residuals_; ++r) {      residuals[r] = jet_residuals_[r].a;      // Note that while this looks like a fast vectorized write, in practice it      // unfortunately thrashes the cache since the writes to the column-major      // jacobian are strided (e.g. rows are non-contiguous).      jacobian_matrix.row(r) = jet_residuals_[r].v;    }    return true;  }  int NumResiduals() const {    return num_residuals_;  // Set by Initialize.  } private:  const CostFunctor& cost_functor_;  // The number of residuals at runtime.  // This will be overriden if NUM_RESIDUALS == Eigen::Dynamic.  int num_residuals_ = kNumResiduals;  // To evaluate the cost function with jets, temporary storage is needed. These  // are the buffers that are used during evaluation; parameters for the input,  // and jet_residuals_ are where the final cost and derivatives end up.  //  // Since this buffer is used for evaluation, the adapter is not thread safe.  using JetType = Jet<T, kNumParameters>;  mutable JetType jet_parameters_[kNumParameters];  // Eigen::Matrix serves as static or dynamic container.  mutable Eigen::Matrix<JetType, kNumResiduals, 1> jet_residuals_;  // The number of residuals is dynamically sized and the number of  // parameters is statically sized.  template <int R>  typename std::enable_if<(R == Eigen::Dynamic), void>::type Initialize(      const CostFunctor& function) {    jet_residuals_.resize(function.NumResiduals());    num_residuals_ = function.NumResiduals();  }  // The number of parameters and residuals are statically sized.  template <int R>  typename std::enable_if<(R != Eigen::Dynamic), void>::type Initialize(      const CostFunctor& /* function */) {    num_residuals_ = kNumResiduals;  }};}  // namespace ceres#endif  // CERES_PUBLIC_TINY_SOLVER_AUTODIFF_FUNCTION_H_
 |