| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2019 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: sameeragarwal@google.com (Sameer Agarwal)#ifndef CERES_PUBLIC_GRADIENT_PROBLEM_H_#define CERES_PUBLIC_GRADIENT_PROBLEM_H_#include <memory>#include "ceres/first_order_function.h"#include "ceres/internal/port.h"#include "ceres/local_parameterization.h"namespace ceres {class FirstOrderFunction;// Instances of GradientProblem represent general non-linear// optimization problems that must be solved using just the value of// the objective function and its gradient. Unlike the Problem class,// which can only be used to model non-linear least squares problems,// instances of GradientProblem not restricted in the form of the// objective function.//// Structurally GradientProblem is a composition of a// FirstOrderFunction and optionally a LocalParameterization.//// The FirstOrderFunction is responsible for evaluating the cost and// gradient of the objective function.//// The LocalParameterization is responsible for going back and forth// between the ambient space and the local tangent space. (See// local_parameterization.h for more details). When a// LocalParameterization is not provided, then the tangent space is// assumed to coincide with the ambient Euclidean space that the// gradient vector lives in.//// Example usage://// The following demonstrate the problem construction for Rosenbrock's function////   f(x,y) = (1-x)^2 + 100(y - x^2)^2;//// class Rosenbrock : public ceres::FirstOrderFunction {//  public://   virtual ~Rosenbrock() {}////   virtual bool Evaluate(const double* parameters,//                         double* cost,//                         double* gradient) const {//     const double x = parameters[0];//     const double y = parameters[1];////     cost[0] = (1.0 - x) * (1.0 - x) + 100.0 * (y - x * x) * (y - x * x);//     if (gradient != NULL) {//       gradient[0] = -2.0 * (1.0 - x) - 200.0 * (y - x * x) * 2.0 * x;//       gradient[1] = 200.0 * (y - x * x);//     }//     return true;//   };////   virtual int NumParameters() const { return 2; };// };//// ceres::GradientProblem problem(new Rosenbrock());class CERES_EXPORT GradientProblem { public:  // Takes ownership of the function.  explicit GradientProblem(FirstOrderFunction* function);  // Takes ownership of the function and the parameterization.  GradientProblem(FirstOrderFunction* function,                  LocalParameterization* parameterization);  int NumParameters() const;  int NumLocalParameters() const;  // This call is not thread safe.  bool Evaluate(const double* parameters, double* cost, double* gradient) const;  bool Plus(const double* x, const double* delta, double* x_plus_delta) const; private:  std::unique_ptr<FirstOrderFunction> function_;  std::unique_ptr<LocalParameterization> parameterization_;  std::unique_ptr<double[]> scratch_;};}  // namespace ceres#endif  // CERES_PUBLIC_GRADIENT_PROBLEM_H_
 |