| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2015 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: sameeragarwal@google.com (Sameer Agarwal)#include "bal_problem.h"#include <cstdio>#include <cstdlib>#include <fstream>#include <string>#include <vector>#include "Eigen/Core"#include "ceres/rotation.h"#include "glog/logging.h"#include "random.h"namespace ceres {namespace examples {namespace {typedef Eigen::Map<Eigen::VectorXd> VectorRef;typedef Eigen::Map<const Eigen::VectorXd> ConstVectorRef;template <typename T>void FscanfOrDie(FILE* fptr, const char* format, T* value) {  int num_scanned = fscanf(fptr, format, value);  if (num_scanned != 1) {    LOG(FATAL) << "Invalid UW data file.";  }}void PerturbPoint3(const double sigma, double* point) {  for (int i = 0; i < 3; ++i) {    point[i] += RandNormal() * sigma;  }}double Median(std::vector<double>* data) {  int n = data->size();  std::vector<double>::iterator mid_point = data->begin() + n / 2;  std::nth_element(data->begin(), mid_point, data->end());  return *mid_point;}}  // namespaceBALProblem::BALProblem(const std::string& filename, bool use_quaternions) {  FILE* fptr = fopen(filename.c_str(), "r");  if (fptr == NULL) {    LOG(FATAL) << "Error: unable to open file " << filename;    return;  };  // This wil die horribly on invalid files. Them's the breaks.  FscanfOrDie(fptr, "%d", &num_cameras_);  FscanfOrDie(fptr, "%d", &num_points_);  FscanfOrDie(fptr, "%d", &num_observations_);  VLOG(1) << "Header: " << num_cameras_ << " " << num_points_ << " "          << num_observations_;  point_index_ = new int[num_observations_];  camera_index_ = new int[num_observations_];  observations_ = new double[2 * num_observations_];  num_parameters_ = 9 * num_cameras_ + 3 * num_points_;  parameters_ = new double[num_parameters_];  for (int i = 0; i < num_observations_; ++i) {    FscanfOrDie(fptr, "%d", camera_index_ + i);    FscanfOrDie(fptr, "%d", point_index_ + i);    for (int j = 0; j < 2; ++j) {      FscanfOrDie(fptr, "%lf", observations_ + 2 * i + j);    }  }  for (int i = 0; i < num_parameters_; ++i) {    FscanfOrDie(fptr, "%lf", parameters_ + i);  }  fclose(fptr);  use_quaternions_ = use_quaternions;  if (use_quaternions) {    // Switch the angle-axis rotations to quaternions.    num_parameters_ = 10 * num_cameras_ + 3 * num_points_;    double* quaternion_parameters = new double[num_parameters_];    double* original_cursor = parameters_;    double* quaternion_cursor = quaternion_parameters;    for (int i = 0; i < num_cameras_; ++i) {      AngleAxisToQuaternion(original_cursor, quaternion_cursor);      quaternion_cursor += 4;      original_cursor += 3;      for (int j = 4; j < 10; ++j) {        *quaternion_cursor++ = *original_cursor++;      }    }    // Copy the rest of the points.    for (int i = 0; i < 3 * num_points_; ++i) {      *quaternion_cursor++ = *original_cursor++;    }    // Swap in the quaternion parameters.    delete[] parameters_;    parameters_ = quaternion_parameters;  }}// This function writes the problem to a file in the same format that// is read by the constructor.void BALProblem::WriteToFile(const std::string& filename) const {  FILE* fptr = fopen(filename.c_str(), "w");  if (fptr == NULL) {    LOG(FATAL) << "Error: unable to open file " << filename;    return;  };  fprintf(fptr, "%d %d %d\n", num_cameras_, num_points_, num_observations_);  for (int i = 0; i < num_observations_; ++i) {    fprintf(fptr, "%d %d", camera_index_[i], point_index_[i]);    for (int j = 0; j < 2; ++j) {      fprintf(fptr, " %g", observations_[2 * i + j]);    }    fprintf(fptr, "\n");  }  for (int i = 0; i < num_cameras(); ++i) {    double angleaxis[9];    if (use_quaternions_) {      // Output in angle-axis format.      QuaternionToAngleAxis(parameters_ + 10 * i, angleaxis);      memcpy(angleaxis + 3, parameters_ + 10 * i + 4, 6 * sizeof(double));    } else {      memcpy(angleaxis, parameters_ + 9 * i, 9 * sizeof(double));    }    for (int j = 0; j < 9; ++j) {      fprintf(fptr, "%.16g\n", angleaxis[j]);    }  }  const double* points = parameters_ + camera_block_size() * num_cameras_;  for (int i = 0; i < num_points(); ++i) {    const double* point = points + i * point_block_size();    for (int j = 0; j < point_block_size(); ++j) {      fprintf(fptr, "%.16g\n", point[j]);    }  }  fclose(fptr);}// Write the problem to a PLY file for inspection in Meshlab or CloudCompare.void BALProblem::WriteToPLYFile(const std::string& filename) const {  std::ofstream of(filename.c_str());  of << "ply" << '\n'     << "format ascii 1.0" << '\n'     << "element vertex " << num_cameras_ + num_points_ << '\n'     << "property float x" << '\n'     << "property float y" << '\n'     << "property float z" << '\n'     << "property uchar red" << '\n'     << "property uchar green" << '\n'     << "property uchar blue" << '\n'     << "end_header" << std::endl;  // Export extrinsic data (i.e. camera centers) as green points.  double angle_axis[3];  double center[3];  for (int i = 0; i < num_cameras(); ++i) {    const double* camera = cameras() + camera_block_size() * i;    CameraToAngleAxisAndCenter(camera, angle_axis, center);    of << center[0] << ' ' << center[1] << ' ' << center[2] << " 0 255 0"       << '\n';  }  // Export the structure (i.e. 3D Points) as white points.  const double* points = parameters_ + camera_block_size() * num_cameras_;  for (int i = 0; i < num_points(); ++i) {    const double* point = points + i * point_block_size();    for (int j = 0; j < point_block_size(); ++j) {      of << point[j] << ' ';    }    of << "255 255 255\n";  }  of.close();}void BALProblem::CameraToAngleAxisAndCenter(const double* camera,                                            double* angle_axis,                                            double* center) const {  VectorRef angle_axis_ref(angle_axis, 3);  if (use_quaternions_) {    QuaternionToAngleAxis(camera, angle_axis);  } else {    angle_axis_ref = ConstVectorRef(camera, 3);  }  // c = -R't  Eigen::VectorXd inverse_rotation = -angle_axis_ref;  AngleAxisRotatePoint(      inverse_rotation.data(), camera + camera_block_size() - 6, center);  VectorRef(center, 3) *= -1.0;}void BALProblem::AngleAxisAndCenterToCamera(const double* angle_axis,                                            const double* center,                                            double* camera) const {  ConstVectorRef angle_axis_ref(angle_axis, 3);  if (use_quaternions_) {    AngleAxisToQuaternion(angle_axis, camera);  } else {    VectorRef(camera, 3) = angle_axis_ref;  }  // t = -R * c  AngleAxisRotatePoint(angle_axis, center, camera + camera_block_size() - 6);  VectorRef(camera + camera_block_size() - 6, 3) *= -1.0;}void BALProblem::Normalize() {  // Compute the marginal median of the geometry.  std::vector<double> tmp(num_points_);  Eigen::Vector3d median;  double* points = mutable_points();  for (int i = 0; i < 3; ++i) {    for (int j = 0; j < num_points_; ++j) {      tmp[j] = points[3 * j + i];    }    median(i) = Median(&tmp);  }  for (int i = 0; i < num_points_; ++i) {    VectorRef point(points + 3 * i, 3);    tmp[i] = (point - median).lpNorm<1>();  }  const double median_absolute_deviation = Median(&tmp);  // Scale so that the median absolute deviation of the resulting  // reconstruction is 100.  const double scale = 100.0 / median_absolute_deviation;  VLOG(2) << "median: " << median.transpose();  VLOG(2) << "median absolute deviation: " << median_absolute_deviation;  VLOG(2) << "scale: " << scale;  // X = scale * (X - median)  for (int i = 0; i < num_points_; ++i) {    VectorRef point(points + 3 * i, 3);    point = scale * (point - median);  }  double* cameras = mutable_cameras();  double angle_axis[3];  double center[3];  for (int i = 0; i < num_cameras_; ++i) {    double* camera = cameras + camera_block_size() * i;    CameraToAngleAxisAndCenter(camera, angle_axis, center);    // center = scale * (center - median)    VectorRef(center, 3) = scale * (VectorRef(center, 3) - median);    AngleAxisAndCenterToCamera(angle_axis, center, camera);  }}void BALProblem::Perturb(const double rotation_sigma,                         const double translation_sigma,                         const double point_sigma) {  CHECK_GE(point_sigma, 0.0);  CHECK_GE(rotation_sigma, 0.0);  CHECK_GE(translation_sigma, 0.0);  double* points = mutable_points();  if (point_sigma > 0) {    for (int i = 0; i < num_points_; ++i) {      PerturbPoint3(point_sigma, points + 3 * i);    }  }  for (int i = 0; i < num_cameras_; ++i) {    double* camera = mutable_cameras() + camera_block_size() * i;    double angle_axis[3];    double center[3];    // Perturb in the rotation of the camera in the angle-axis    // representation.    CameraToAngleAxisAndCenter(camera, angle_axis, center);    if (rotation_sigma > 0.0) {      PerturbPoint3(rotation_sigma, angle_axis);    }    AngleAxisAndCenterToCamera(angle_axis, center, camera);    if (translation_sigma > 0.0) {      PerturbPoint3(translation_sigma, camera + camera_block_size() - 6);    }  }}BALProblem::~BALProblem() {  delete[] point_index_;  delete[] camera_index_;  delete[] observations_;  delete[] parameters_;}}  // namespace examples}  // namespace ceres
 |