| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145 | 
							- // Ceres Solver - A fast non-linear least squares minimizer
 
- // Copyright 2018 Google Inc. All rights reserved.
 
- // http://ceres-solver.org/
 
- //
 
- // Redistribution and use in source and binary forms, with or without
 
- // modification, are permitted provided that the following conditions are met:
 
- //
 
- // * Redistributions of source code must retain the above copyright notice,
 
- //   this list of conditions and the following disclaimer.
 
- // * Redistributions in binary form must reproduce the above copyright notice,
 
- //   this list of conditions and the following disclaimer in the documentation
 
- //   and/or other materials provided with the distribution.
 
- // * Neither the name of Google Inc. nor the names of its contributors may be
 
- //   used to endorse or promote products derived from this software without
 
- //   specific prior written permission.
 
- //
 
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 
- // POSSIBILITY OF SUCH DAMAGE.
 
- //
 
- // Author: alexs.mac@gmail.com (Alex Stewart)
 
- #ifndef CERES_INTERNAL_ACCELERATE_SPARSE_H_
 
- #define CERES_INTERNAL_ACCELERATE_SPARSE_H_
 
- // This include must come before any #ifndef check on Ceres compile options.
 
- #include "ceres/internal/port.h"
 
- #ifndef CERES_NO_ACCELERATE_SPARSE
 
- #include <memory>
 
- #include <string>
 
- #include <vector>
 
- #include "ceres/linear_solver.h"
 
- #include "ceres/sparse_cholesky.h"
 
- #include "Accelerate.h"
 
- namespace ceres {
 
- namespace internal {
 
- class CompressedRowSparseMatrix;
 
- class TripletSparseMatrix;
 
- template<typename Scalar>
 
- struct SparseTypesTrait {
 
- };
 
- template<>
 
- struct SparseTypesTrait<double> {
 
-   typedef DenseVector_Double DenseVector;
 
-   typedef SparseMatrix_Double SparseMatrix;
 
-   typedef SparseOpaqueSymbolicFactorization SymbolicFactorization;
 
-   typedef SparseOpaqueFactorization_Double NumericFactorization;
 
- };
 
- template<>
 
- struct SparseTypesTrait<float> {
 
-   typedef DenseVector_Float DenseVector;
 
-   typedef SparseMatrix_Float SparseMatrix;
 
-   typedef SparseOpaqueSymbolicFactorization SymbolicFactorization;
 
-   typedef SparseOpaqueFactorization_Float NumericFactorization;
 
- };
 
- template<typename Scalar>
 
- class AccelerateSparse {
 
-  public:
 
-   using DenseVector = typename SparseTypesTrait<Scalar>::DenseVector;
 
-   // Use ASSparseMatrix to avoid collision with ceres::internal::SparseMatrix.
 
-   using ASSparseMatrix = typename SparseTypesTrait<Scalar>::SparseMatrix;
 
-   using SymbolicFactorization = typename SparseTypesTrait<Scalar>::SymbolicFactorization;
 
-   using NumericFactorization = typename SparseTypesTrait<Scalar>::NumericFactorization;
 
-   // Solves a linear system given its symbolic (reference counted within
 
-   // NumericFactorization) and numeric factorization.
 
-   void Solve(NumericFactorization* numeric_factor,
 
-              DenseVector* rhs_and_solution);
 
-   // Note: Accelerate's API passes/returns its objects by value, but as the
 
-   //       objects contain pointers to the underlying data these copies are
 
-   //       all shallow (in some cases Accelerate also reference counts the
 
-   //       objects internally).
 
-   ASSparseMatrix CreateSparseMatrixTransposeView(CompressedRowSparseMatrix* A);
 
-   // Computes a symbolic factorisation of A that can be used in Solve().
 
-   SymbolicFactorization AnalyzeCholesky(ASSparseMatrix* A);
 
-   // Compute the numeric Cholesky factorization of A, given its
 
-   // symbolic factorization.
 
-   NumericFactorization Cholesky(ASSparseMatrix* A,
 
-                                 SymbolicFactorization* symbolic_factor);
 
-   // Reuse the NumericFactorization from a previous matrix with the same
 
-   // symbolic factorization to represent a new numeric factorization.
 
-   void Cholesky(ASSparseMatrix* A, NumericFactorization* numeric_factor);
 
-  private:
 
-   std::vector<long> column_starts_;
 
-   // Storage for the values of A if Scalar != double (necessitating a copy).
 
-   Eigen::Matrix<Scalar, Eigen::Dynamic, 1> values_;
 
- };
 
- // An implementation of SparseCholesky interface using Apple's Accelerate
 
- // framework.
 
- template<typename Scalar>
 
- class AppleAccelerateCholesky : public SparseCholesky {
 
-  public:
 
-   // Factory
 
-   static std::unique_ptr<SparseCholesky> Create(OrderingType ordering_type);
 
-   // SparseCholesky interface.
 
-   virtual ~AppleAccelerateCholesky();
 
-   virtual CompressedRowSparseMatrix::StorageType StorageType() const;
 
-   virtual LinearSolverTerminationType Factorize(CompressedRowSparseMatrix* lhs,
 
-                                                 std::string* message);
 
-   virtual LinearSolverTerminationType Solve(const double* rhs,
 
-                                             double* solution,
 
-                                             std::string* message);
 
-  private:
 
-   AppleAccelerateCholesky(const OrderingType ordering_type);
 
-   void FreeSymbolicFactorization();
 
-   void FreeNumericFactorization();
 
-   const OrderingType ordering_type_;
 
-   AccelerateSparse<Scalar> as_;
 
-   std::unique_ptr<typename AccelerateSparse<Scalar>::SymbolicFactorization>
 
-   symbolic_factor_;
 
-   std::unique_ptr<typename AccelerateSparse<Scalar>::NumericFactorization>
 
-   numeric_factor_;
 
-   // Copy of rhs/solution if Scalar != double (necessitating a copy).
 
-   Eigen::Matrix<Scalar, Eigen::Dynamic, 1> scalar_rhs_and_solution_;
 
- };
 
- }
 
- }
 
- #endif  // CERES_NO_ACCELERATE_SPARSE
 
- #endif  // CERES_INTERNAL_ACCELERATE_SPARSE_H_
 
 
  |