| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2015 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: sameeragarwal@google.com (Sameer Agarwal)#include "ceres/program.h"#include <cmath>#include <limits>#include <memory>#include <vector>#include "ceres/internal/integer_sequence_algorithm.h"#include "ceres/problem_impl.h"#include "ceres/residual_block.h"#include "ceres/sized_cost_function.h"#include "ceres/triplet_sparse_matrix.h"#include "gtest/gtest.h"namespace ceres {namespace internal {using std::string;using std::vector;// A cost function that simply returns its argument.class UnaryIdentityCostFunction : public SizedCostFunction<1, 1> { public:  virtual bool Evaluate(double const* const* parameters,                        double* residuals,                        double** jacobians) const {    residuals[0] = parameters[0][0];    if (jacobians != nullptr && jacobians[0] != nullptr) {      jacobians[0][0] = 1.0;    }    return true;  }};// Templated base class for the CostFunction signatures.template <int kNumResiduals, int... Ns>class MockCostFunctionBase : public SizedCostFunction<kNumResiduals, Ns...> { public:  virtual bool Evaluate(double const* const* parameters,                        double* residuals,                        double** jacobians) const {    const int kNumParameters = Sum<integer_sequence<int, Ns...>>::Value;    for (int i = 0; i < kNumResiduals; ++i) {      residuals[i] = kNumResiduals + kNumParameters;    }    return true;  }};class UnaryCostFunction : public MockCostFunctionBase<2, 1> {};class BinaryCostFunction : public MockCostFunctionBase<2, 1, 1> {};class TernaryCostFunction : public MockCostFunctionBase<2, 1, 1, 1> {};TEST(Program, RemoveFixedBlocksNothingConstant) {  ProblemImpl problem;  double x;  double y;  double z;  problem.AddParameterBlock(&x, 1);  problem.AddParameterBlock(&y, 1);  problem.AddParameterBlock(&z, 1);  problem.AddResidualBlock(new UnaryCostFunction(), nullptr, &x);  problem.AddResidualBlock(new BinaryCostFunction(), nullptr, &x, &y);  problem.AddResidualBlock(new TernaryCostFunction(), nullptr, &x, &y, &z);  vector<double*> removed_parameter_blocks;  double fixed_cost = 0.0;  string message;  std::unique_ptr<Program> reduced_program(problem.program().CreateReducedProgram(          &removed_parameter_blocks, &fixed_cost, &message));  EXPECT_EQ(reduced_program->NumParameterBlocks(), 3);  EXPECT_EQ(reduced_program->NumResidualBlocks(), 3);  EXPECT_EQ(removed_parameter_blocks.size(), 0);  EXPECT_EQ(fixed_cost, 0.0);}TEST(Program, RemoveFixedBlocksAllParameterBlocksConstant) {  ProblemImpl problem;  double x = 1.0;  problem.AddParameterBlock(&x, 1);  problem.AddResidualBlock(new UnaryCostFunction(), nullptr, &x);  problem.SetParameterBlockConstant(&x);  vector<double*> removed_parameter_blocks;  double fixed_cost = 0.0;  string message;  std::unique_ptr<Program> reduced_program(      problem.program().CreateReducedProgram(          &removed_parameter_blocks, &fixed_cost, &message));  EXPECT_EQ(reduced_program->NumParameterBlocks(), 0);  EXPECT_EQ(reduced_program->NumResidualBlocks(), 0);  EXPECT_EQ(removed_parameter_blocks.size(), 1);  EXPECT_EQ(removed_parameter_blocks[0], &x);  EXPECT_EQ(fixed_cost, 9.0);}TEST(Program, RemoveFixedBlocksNoResidualBlocks) {  ProblemImpl problem;  double x;  double y;  double z;  problem.AddParameterBlock(&x, 1);  problem.AddParameterBlock(&y, 1);  problem.AddParameterBlock(&z, 1);  vector<double*> removed_parameter_blocks;  double fixed_cost = 0.0;  string message;  std::unique_ptr<Program> reduced_program(      problem.program().CreateReducedProgram(          &removed_parameter_blocks, &fixed_cost, &message));  EXPECT_EQ(reduced_program->NumParameterBlocks(), 0);  EXPECT_EQ(reduced_program->NumResidualBlocks(), 0);  EXPECT_EQ(removed_parameter_blocks.size(), 3);  EXPECT_EQ(fixed_cost, 0.0);}TEST(Program, RemoveFixedBlocksOneParameterBlockConstant) {  ProblemImpl problem;  double x;  double y;  double z;  problem.AddParameterBlock(&x, 1);  problem.AddParameterBlock(&y, 1);  problem.AddParameterBlock(&z, 1);  problem.AddResidualBlock(new UnaryCostFunction(), nullptr, &x);  problem.AddResidualBlock(new BinaryCostFunction(), nullptr, &x, &y);  problem.SetParameterBlockConstant(&x);  vector<double*> removed_parameter_blocks;  double fixed_cost = 0.0;  string message;  std::unique_ptr<Program> reduced_program(      problem.program().CreateReducedProgram(          &removed_parameter_blocks, &fixed_cost, &message));  EXPECT_EQ(reduced_program->NumParameterBlocks(), 1);  EXPECT_EQ(reduced_program->NumResidualBlocks(), 1);}TEST(Program, RemoveFixedBlocksNumEliminateBlocks) {  ProblemImpl problem;  double x;  double y;  double z;  problem.AddParameterBlock(&x, 1);  problem.AddParameterBlock(&y, 1);  problem.AddParameterBlock(&z, 1);  problem.AddResidualBlock(new UnaryCostFunction(), nullptr, &x);  problem.AddResidualBlock(new TernaryCostFunction(), nullptr, &x, &y, &z);  problem.AddResidualBlock(new BinaryCostFunction(), nullptr, &x, &y);  problem.SetParameterBlockConstant(&x);  vector<double*> removed_parameter_blocks;  double fixed_cost = 0.0;  string message;  std::unique_ptr<Program> reduced_program(      problem.program().CreateReducedProgram(          &removed_parameter_blocks, &fixed_cost, &message));  EXPECT_EQ(reduced_program->NumParameterBlocks(), 2);  EXPECT_EQ(reduced_program->NumResidualBlocks(), 2);}TEST(Program, RemoveFixedBlocksFixedCost) {  ProblemImpl problem;  double x = 1.23;  double y = 4.56;  double z = 7.89;  problem.AddParameterBlock(&x, 1);  problem.AddParameterBlock(&y, 1);  problem.AddParameterBlock(&z, 1);  problem.AddResidualBlock(new UnaryIdentityCostFunction(), nullptr, &x);  problem.AddResidualBlock(new TernaryCostFunction(), nullptr, &x, &y, &z);  problem.AddResidualBlock(new BinaryCostFunction(), nullptr, &x, &y);  problem.SetParameterBlockConstant(&x);  ResidualBlock *expected_removed_block =      problem.program().residual_blocks()[0];  std::unique_ptr<double[]> scratch(      new double[expected_removed_block->NumScratchDoublesForEvaluate()]);  double expected_fixed_cost;  expected_removed_block->Evaluate(true,                                   &expected_fixed_cost,                                   nullptr,                                   nullptr,                                   scratch.get());  vector<double*> removed_parameter_blocks;  double fixed_cost = 0.0;  string message;  std::unique_ptr<Program> reduced_program(      problem.program().CreateReducedProgram(          &removed_parameter_blocks, &fixed_cost, &message));  EXPECT_EQ(reduced_program->NumParameterBlocks(), 2);  EXPECT_EQ(reduced_program->NumResidualBlocks(), 2);  EXPECT_DOUBLE_EQ(fixed_cost, expected_fixed_cost);}TEST(Program, CreateJacobianBlockSparsityTranspose) {  ProblemImpl problem;  double x[2];  double y[3];  double z;  problem.AddParameterBlock(x, 2);  problem.AddParameterBlock(y, 3);  problem.AddParameterBlock(&z, 1);  problem.AddResidualBlock(new MockCostFunctionBase<2, 2>(), nullptr, x);  problem.AddResidualBlock(new MockCostFunctionBase<3, 1, 2>(), nullptr, &z, x);  problem.AddResidualBlock(new MockCostFunctionBase<4, 1, 3>(), nullptr, &z, y);  problem.AddResidualBlock(new MockCostFunctionBase<5, 1, 3>(), nullptr, &z, y);  problem.AddResidualBlock(new MockCostFunctionBase<1, 2, 1>(), nullptr, x, &z);  problem.AddResidualBlock(new MockCostFunctionBase<2, 1, 3>(), nullptr, &z, y);  problem.AddResidualBlock(new MockCostFunctionBase<2, 2, 1>(), nullptr, x, &z);  problem.AddResidualBlock(new MockCostFunctionBase<1, 3>(), nullptr, y);  TripletSparseMatrix expected_block_sparse_jacobian(3, 8, 14);  {    int* rows = expected_block_sparse_jacobian.mutable_rows();    int* cols = expected_block_sparse_jacobian.mutable_cols();    double* values = expected_block_sparse_jacobian.mutable_values();    rows[0] = 0;    cols[0] = 0;    rows[1] = 2;    cols[1] = 1;    rows[2] = 0;    cols[2] = 1;    rows[3] = 2;    cols[3] = 2;    rows[4] = 1;    cols[4] = 2;    rows[5] = 2;    cols[5] = 3;    rows[6] = 1;    cols[6] = 3;    rows[7] = 0;    cols[7] = 4;    rows[8] = 2;    cols[8] = 4;    rows[9] = 2;    cols[9] = 5;    rows[10] = 1;    cols[10] = 5;    rows[11] = 0;    cols[11] = 6;    rows[12] = 2;    cols[12] = 6;    rows[13] = 1;    cols[13] = 7;    std::fill(values, values + 14, 1.0);    expected_block_sparse_jacobian.set_num_nonzeros(14);  }  Program* program = problem.mutable_program();  program->SetParameterOffsetsAndIndex();  std::unique_ptr<TripletSparseMatrix> actual_block_sparse_jacobian(      program->CreateJacobianBlockSparsityTranspose());  Matrix expected_dense_jacobian;  expected_block_sparse_jacobian.ToDenseMatrix(&expected_dense_jacobian);  Matrix actual_dense_jacobian;  actual_block_sparse_jacobian->ToDenseMatrix(&actual_dense_jacobian);  EXPECT_EQ((expected_dense_jacobian - actual_dense_jacobian).norm(), 0.0);}template <int kNumResiduals, int kNumParameterBlocks>class NumParameterBlocksCostFunction : public CostFunction { public:  NumParameterBlocksCostFunction() {    set_num_residuals(kNumResiduals);    for (int i = 0; i < kNumParameterBlocks; ++i) {      mutable_parameter_block_sizes()->push_back(1);    }  }  virtual ~NumParameterBlocksCostFunction() {  }  virtual bool Evaluate(double const* const* parameters,                        double* residuals,                        double** jacobians) const {    return true;  }};TEST(Program, ReallocationInCreateJacobianBlockSparsityTranspose) {  // CreateJacobianBlockSparsityTranspose starts with a conservative  // estimate of the size of the sparsity pattern. This test ensures  // that when those estimates are violated, the reallocation/resizing  // logic works correctly.  ProblemImpl problem;  double x[20];  vector<double*> parameter_blocks;  for (int i = 0; i < 20; ++i) {    problem.AddParameterBlock(x + i, 1);    parameter_blocks.push_back(x + i);  }  problem.AddResidualBlock(new NumParameterBlocksCostFunction<1, 20>(),                           nullptr,                           parameter_blocks.data(),                           static_cast<int>(parameter_blocks.size()));  TripletSparseMatrix expected_block_sparse_jacobian(20, 1, 20);  {    int* rows = expected_block_sparse_jacobian.mutable_rows();    int* cols = expected_block_sparse_jacobian.mutable_cols();    for (int i = 0; i < 20; ++i) {      rows[i] = i;      cols[i] = 0;    }    double* values = expected_block_sparse_jacobian.mutable_values();    std::fill(values, values + 20, 1.0);    expected_block_sparse_jacobian.set_num_nonzeros(20);  }  Program* program = problem.mutable_program();  program->SetParameterOffsetsAndIndex();  std::unique_ptr<TripletSparseMatrix> actual_block_sparse_jacobian(      program->CreateJacobianBlockSparsityTranspose());  Matrix expected_dense_jacobian;  expected_block_sparse_jacobian.ToDenseMatrix(&expected_dense_jacobian);  Matrix actual_dense_jacobian;  actual_block_sparse_jacobian->ToDenseMatrix(&actual_dense_jacobian);  EXPECT_EQ((expected_dense_jacobian - actual_dense_jacobian).norm(), 0.0);}TEST(Program, ProblemHasNanParameterBlocks) {  ProblemImpl problem;  double x[2];  x[0] = 1.0;  x[1] = std::numeric_limits<double>::quiet_NaN();  problem.AddResidualBlock(new MockCostFunctionBase<1, 2>(), nullptr, x);  string error;  EXPECT_FALSE(problem.program().ParameterBlocksAreFinite(&error));  EXPECT_NE(error.find("has at least one invalid value"),            string::npos) << error;}TEST(Program, InfeasibleParameterBlock) {  ProblemImpl problem;  double x[] = {0.0, 0.0};  problem.AddResidualBlock(new MockCostFunctionBase<1, 2>(), nullptr, x);  problem.SetParameterLowerBound(x, 0, 2.0);  problem.SetParameterUpperBound(x, 0, 1.0);  string error;  EXPECT_FALSE(problem.program().IsFeasible(&error));  EXPECT_NE(error.find("infeasible bound"), string::npos) << error;}TEST(Program, InfeasibleConstantParameterBlock) {  ProblemImpl problem;  double x[] = {0.0, 0.0};  problem.AddResidualBlock(new MockCostFunctionBase<1, 2>(), nullptr, x);  problem.SetParameterLowerBound(x, 0, 1.0);  problem.SetParameterUpperBound(x, 0, 2.0);  problem.SetParameterBlockConstant(x);  string error;  EXPECT_FALSE(problem.program().IsFeasible(&error));  EXPECT_NE(error.find("infeasible value"), string::npos) << error;}}  // namespace internal}  // namespace ceres
 |