| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.// http://code.google.com/p/ceres-solver///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: wjr@google.com (William Rucklidge)//// Tests for the conditioned cost function.#include "ceres/conditioned_cost_function.h"#include "ceres/internal/eigen.h"#include "ceres/normal_prior.h"#include "ceres/types.h"#include "gtest/gtest.h"namespace ceres {namespace internal {// The size of the cost functions we build.static const int kTestCostFunctionSize = 3;// A simple cost function: return ax + b.class LinearCostFunction : public CostFunction { public:  LinearCostFunction(double a, double b) : a_(a), b_(b) {    set_num_residuals(1);    mutable_parameter_block_sizes()->push_back(1);  }  virtual bool Evaluate(double const* const* parameters,                        double* residuals,                        double** jacobians) const {    *residuals = **parameters * a_ + b_;    if (jacobians && *jacobians) {      **jacobians = a_;    }    return true;  } private:  const double a_, b_;};// Tests that ConditionedCostFunction does what it's supposed to.TEST(CostFunctionTest, ConditionedCostFunction) {  double v1[kTestCostFunctionSize], v2[kTestCostFunctionSize],      jac[kTestCostFunctionSize * kTestCostFunctionSize],      result[kTestCostFunctionSize];  for (int i = 0; i < kTestCostFunctionSize; i++) {    v1[i] = i;    v2[i] = i * 10;    // Seed a few garbage values in the Jacobian matrix, to make sure that    // they're overwritten.    jac[i * 2] = i * i;    result[i] = i * i * i;  }  // Make a cost function that computes x - v2  VectorRef v2_vector(v2, kTestCostFunctionSize, 1);  Matrix identity(kTestCostFunctionSize, kTestCostFunctionSize);  identity.setIdentity();  NormalPrior* difference_cost_function = new NormalPrior(identity, v2_vector);  std::vector<CostFunction*> conditioners;  for (int i = 0; i < kTestCostFunctionSize; i++) {    conditioners.push_back(new LinearCostFunction(i + 2, i * 7));  }  ConditionedCostFunction conditioned_cost_function(difference_cost_function,                                                    conditioners,                                                    TAKE_OWNERSHIP);  EXPECT_EQ(difference_cost_function->num_residuals(),            conditioned_cost_function.num_residuals());  EXPECT_EQ(difference_cost_function->parameter_block_sizes(),            conditioned_cost_function.parameter_block_sizes());  double *parameters[1];  parameters[0] = v1;  double *jacs[1];  jacs[0] = jac;  conditioned_cost_function.Evaluate(parameters, result, jacs);  for (int i = 0; i < kTestCostFunctionSize; i++) {    EXPECT_DOUBLE_EQ((i + 2) * (v1[i] - v2[i]) + i * 7, result[i]);  }  for (int i = 0; i < kTestCostFunctionSize; i++) {    for (int j = 0; j < kTestCostFunctionSize; j++) {      double actual = jac[i * kTestCostFunctionSize + j];      if (i != j) {        EXPECT_DOUBLE_EQ(0, actual);      } else {        EXPECT_DOUBLE_EQ(i + 2, actual);      }    }  }}}  // namespace internal}  // namespace ceres
 |