| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2014 Google Inc. All rights reserved.// http://code.google.com/p/ceres-solver///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: keir@google.com (Keir Mierle)//         sameeragarwal@google.com (Sameer Agarwal)#ifndef CERES_PUBLIC_LOCAL_PARAMETERIZATION_H_#define CERES_PUBLIC_LOCAL_PARAMETERIZATION_H_#include <vector>#include "ceres/internal/port.h"#include "ceres/internal/disable_warnings.h"namespace ceres {// Purpose: Sometimes parameter blocks x can overparameterize a problem////   min f(x)//    x//// In that case it is desirable to choose a parameterization for the// block itself to remove the null directions of the cost. More// generally, if x lies on a manifold of a smaller dimension than the// ambient space that it is embedded in, then it is numerically and// computationally more effective to optimize it using a// parameterization that lives in the tangent space of that manifold// at each point.//// For example, a sphere in three dimensions is a 2 dimensional// manifold, embedded in a three dimensional space. At each point on// the sphere, the plane tangent to it defines a two dimensional// tangent space. For a cost function defined on this sphere, given a// point x, moving in the direction normal to the sphere at that point// is not useful. Thus a better way to do a local optimization is to// optimize over two dimensional vector delta in the tangent space at// that point and then "move" to the point x + delta, where the move// operation involves projecting back onto the sphere. Doing so// removes a redundent dimension from the optimization, making it// numerically more robust and efficient.//// More generally we can define a function////   x_plus_delta = Plus(x, delta),//// where x_plus_delta has the same size as x, and delta is of size// less than or equal to x. The function Plus, generalizes the// definition of vector addition. Thus it satisfies the identify////   Plus(x, 0) = x, for all x.//// A trivial version of Plus is when delta is of the same size as x// and////   Plus(x, delta) = x + delta//// A more interesting case if x is two dimensional vector, and the// user wishes to hold the first coordinate constant. Then, delta is a// scalar and Plus is defined as////   Plus(x, delta) = x + [0] * delta//                        [1]//// An example that occurs commonly in Structure from Motion problems// is when camera rotations are parameterized using Quaternion. There,// it is useful only make updates orthogonal to that 4-vector defining// the quaternion. One way to do this is to let delta be a 3// dimensional vector and define Plus to be////   Plus(x, delta) = [cos(|delta|), sin(|delta|) delta / |delta|] * x//// The multiplication between the two 4-vectors on the RHS is the// standard quaternion product.//// Given g and a point x, optimizing f can now be restated as////     min  f(Plus(x, delta))//    delta//// Given a solution delta to this problem, the optimal value is then// given by////   x* = Plus(x, delta)//// The class LocalParameterization defines the function Plus and its// Jacobian which is needed to compute the Jacobian of f w.r.t delta.class CERES_EXPORT LocalParameterization { public:  virtual ~LocalParameterization();  // Generalization of the addition operation,  //  //   x_plus_delta = Plus(x, delta)  //  // with the condition that Plus(x, 0) = x.  virtual bool Plus(const double* x,                    const double* delta,                    double* x_plus_delta) const = 0;  // The jacobian of Plus(x, delta) w.r.t delta at delta = 0.  //  // jacobian is a row-major GlobalSize() x LocalSize() matrix.  virtual bool ComputeJacobian(const double* x, double* jacobian) const = 0;  // local_matrix = global_matrix * jacobian  //  // global_matrix is a num_rows x GlobalSize  row major matrix.  // local_matrix is a num_rows x LocalSize row major matrix.  // jacobian(x) is the matrix returned by ComputeJacobian at x.  //  // This is only used by GradientProblem. For most normal uses, it is  // okay to use the default implementation.  virtual bool MultiplyByJacobian(const double* x,                                  const int num_rows,                                  const double* global_matrix,                                  double* local_matrix) const;  // Size of x.  virtual int GlobalSize() const = 0;  // Size of delta.  virtual int LocalSize() const = 0;};// Some basic parameterizations// Identity Parameterization: Plus(x, delta) = x + deltaclass CERES_EXPORT IdentityParameterization : public LocalParameterization { public:  explicit IdentityParameterization(int size);  virtual ~IdentityParameterization() {}  virtual bool Plus(const double* x,                    const double* delta,                    double* x_plus_delta) const;  virtual bool ComputeJacobian(const double* x,                               double* jacobian) const;  virtual bool MultiplyByJacobian(const double* x,                                  const int num_cols,                                  const double* global_matrix,                                  double* local_matrix) const;  virtual int GlobalSize() const { return size_; }  virtual int LocalSize() const { return size_; } private:  const int size_;};// Hold a subset of the parameters inside a parameter block constant.class CERES_EXPORT SubsetParameterization : public LocalParameterization { public:  explicit SubsetParameterization(int size,                                  const std::vector<int>& constant_parameters);  virtual ~SubsetParameterization() {}  virtual bool Plus(const double* x,                    const double* delta,                    double* x_plus_delta) const;  virtual bool ComputeJacobian(const double* x,                               double* jacobian) const;  virtual bool MultiplyByJacobian(const double* x,                                  const int num_cols,                                  const double* global_matrix,                                  double* local_matrix) const;  virtual int GlobalSize() const {    return static_cast<int>(constancy_mask_.size());  }  virtual int LocalSize() const { return local_size_; } private:  const int local_size_;  std::vector<int> constancy_mask_;};// Plus(x, delta) = [cos(|delta|), sin(|delta|) delta / |delta|] * x// with * being the quaternion multiplication operator. Here we assume// that the first element of the quaternion vector is the real (cos// theta) part.class CERES_EXPORT QuaternionParameterization : public LocalParameterization { public:  virtual ~QuaternionParameterization() {}  virtual bool Plus(const double* x,                    const double* delta,                    double* x_plus_delta) const;  virtual bool ComputeJacobian(const double* x,                               double* jacobian) const;  virtual int GlobalSize() const { return 4; }  virtual int LocalSize() const { return 3; }};}  // namespace ceres#include "ceres/internal/reenable_warnings.h"#endif  // CERES_PUBLIC_LOCAL_PARAMETERIZATION_H_
 |