| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2015 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: keir@google.com (Keir Mierle)//         sameeragarwal@google.com (Sameer Agarwal)//// This tests the TrustRegionMinimizer loop using a direct Evaluator// implementation, rather than having a test that goes through all the// Program and Problem machinery.#include <cmath>#include "ceres/autodiff_cost_function.h"#include "ceres/cost_function.h"#include "ceres/dense_qr_solver.h"#include "ceres/dense_sparse_matrix.h"#include "ceres/evaluator.h"#include "ceres/internal/port.h"#include "ceres/linear_solver.h"#include "ceres/minimizer.h"#include "ceres/problem.h"#include "ceres/trust_region_minimizer.h"#include "ceres/trust_region_strategy.h"#include "gtest/gtest.h"namespace ceres {namespace internal {// Templated Evaluator for Powell's function. The template parameters// indicate which of the four variables/columns of the jacobian are// active. This is equivalent to constructing a problem and using the// SubsetLocalParameterization. This allows us to test the support for// the Evaluator::Plus operation besides checking for the basic// performance of the trust region algorithm.template <bool col1, bool col2, bool col3, bool col4>class PowellEvaluator2 : public Evaluator { public:  PowellEvaluator2()      : num_active_cols_(          (col1 ? 1 : 0) +          (col2 ? 1 : 0) +          (col3 ? 1 : 0) +          (col4 ? 1 : 0)) {    VLOG(1) << "Columns: "            << col1 << " "            << col2 << " "            << col3 << " "            << col4;  }  virtual ~PowellEvaluator2() {}  // Implementation of Evaluator interface.  virtual SparseMatrix* CreateJacobian() const {    CHECK(col1 || col2 || col3 || col4);    DenseSparseMatrix* dense_jacobian =        new DenseSparseMatrix(NumResiduals(), NumEffectiveParameters());    dense_jacobian->SetZero();    return dense_jacobian;  }  virtual bool Evaluate(const Evaluator::EvaluateOptions& evaluate_options,                        const double* state,                        double* cost,                        double* residuals,                        double* gradient,                        SparseMatrix* jacobian) {    const double x1 = state[0];    const double x2 = state[1];    const double x3 = state[2];    const double x4 = state[3];    VLOG(1) << "State: "            << "x1=" << x1 << ", "            << "x2=" << x2 << ", "            << "x3=" << x3 << ", "            << "x4=" << x4 << ".";    const double f1 = x1 + 10.0 * x2;    const double f2 = sqrt(5.0) * (x3 - x4);    const double f3 = pow(x2 - 2.0 * x3, 2.0);    const double f4 = sqrt(10.0) * pow(x1 - x4, 2.0);    VLOG(1) << "Function: "            << "f1=" << f1 << ", "            << "f2=" << f2 << ", "            << "f3=" << f3 << ", "            << "f4=" << f4 << ".";    *cost = (f1*f1 + f2*f2 + f3*f3 + f4*f4) / 2.0;    VLOG(1) << "Cost: " << *cost;    if (residuals != NULL) {      residuals[0] = f1;      residuals[1] = f2;      residuals[2] = f3;      residuals[3] = f4;    }    if (jacobian != NULL) {      DenseSparseMatrix* dense_jacobian;      dense_jacobian = down_cast<DenseSparseMatrix*>(jacobian);      dense_jacobian->SetZero();      ColMajorMatrixRef jacobian_matrix = dense_jacobian->mutable_matrix();      CHECK_EQ(jacobian_matrix.cols(), num_active_cols_);      int column_index = 0;      if (col1) {        jacobian_matrix.col(column_index++) <<            1.0,            0.0,            0.0,            sqrt(10.0) * 2.0 * (x1 - x4) * (1.0 - x4);      }      if (col2) {        jacobian_matrix.col(column_index++) <<            10.0,            0.0,            2.0*(x2 - 2.0*x3)*(1.0 - 2.0*x3),            0.0;      }      if (col3) {        jacobian_matrix.col(column_index++) <<            0.0,            sqrt(5.0),            2.0*(x2 - 2.0*x3)*(x2 - 2.0),            0.0;      }      if (col4) {        jacobian_matrix.col(column_index++) <<            0.0,            -sqrt(5.0),            0.0,            sqrt(10.0) * 2.0 * (x1 - x4) * (x1 - 1.0);      }      VLOG(1) << "\n" << jacobian_matrix;    }    if (gradient != NULL) {      int column_index = 0;      if (col1) {        gradient[column_index++] = f1  + f4 * sqrt(10.0) * 2.0 * (x1 - x4);      }      if (col2) {        gradient[column_index++] = f1 * 10.0 + f3 * 2.0 * (x2 - 2.0 * x3);      }      if (col3) {        gradient[column_index++] =            f2 * sqrt(5.0) + f3 * (2.0 * 2.0 * (2.0 * x3 - x2));      }      if (col4) {        gradient[column_index++] =            -f2 * sqrt(5.0) + f4 * sqrt(10.0) * 2.0 * (x4 - x1);      }    }    return true;  }  virtual bool Plus(const double* state,                    const double* delta,                    double* state_plus_delta) const {    int delta_index = 0;    state_plus_delta[0] = (col1  ? state[0] + delta[delta_index++] : state[0]);    state_plus_delta[1] = (col2  ? state[1] + delta[delta_index++] : state[1]);    state_plus_delta[2] = (col3  ? state[2] + delta[delta_index++] : state[2]);    state_plus_delta[3] = (col4  ? state[3] + delta[delta_index++] : state[3]);    return true;  }  virtual int NumEffectiveParameters() const { return num_active_cols_; }  virtual int NumParameters()          const { return 4; }  virtual int NumResiduals()           const { return 4; } private:  const int num_active_cols_;};// Templated function to hold a subset of the columns fixed and check// if the solver converges to the optimal values or not.template<bool col1, bool col2, bool col3, bool col4>void IsTrustRegionSolveSuccessful(TrustRegionStrategyType strategy_type) {  Solver::Options solver_options;  LinearSolver::Options linear_solver_options;  DenseQRSolver linear_solver(linear_solver_options);  double parameters[4] = { 3, -1, 0, 1.0 };  // If the column is inactive, then set its value to the optimal  // value.  parameters[0] = (col1 ? parameters[0] : 0.0);  parameters[1] = (col2 ? parameters[1] : 0.0);  parameters[2] = (col3 ? parameters[2] : 0.0);  parameters[3] = (col4 ? parameters[3] : 0.0);  Minimizer::Options minimizer_options(solver_options);  minimizer_options.gradient_tolerance = 1e-26;  minimizer_options.function_tolerance = 1e-26;  minimizer_options.parameter_tolerance = 1e-26;  minimizer_options.evaluator.reset(      new PowellEvaluator2<col1, col2, col3, col4>);  minimizer_options.jacobian.reset(      minimizer_options.evaluator->CreateJacobian());  TrustRegionStrategy::Options trust_region_strategy_options;  trust_region_strategy_options.trust_region_strategy_type = strategy_type;  trust_region_strategy_options.linear_solver = &linear_solver;  trust_region_strategy_options.initial_radius = 1e4;  trust_region_strategy_options.max_radius = 1e20;  trust_region_strategy_options.min_lm_diagonal = 1e-6;  trust_region_strategy_options.max_lm_diagonal = 1e32;  minimizer_options.trust_region_strategy.reset(      TrustRegionStrategy::Create(trust_region_strategy_options));  TrustRegionMinimizer minimizer;  Solver::Summary summary;  minimizer.Minimize(minimizer_options, parameters, &summary);  // The minimum is at x1 = x2 = x3 = x4 = 0.  EXPECT_NEAR(0.0, parameters[0], 0.001);  EXPECT_NEAR(0.0, parameters[1], 0.001);  EXPECT_NEAR(0.0, parameters[2], 0.001);  EXPECT_NEAR(0.0, parameters[3], 0.001);}TEST(TrustRegionMinimizer, PowellsSingularFunctionUsingLevenbergMarquardt) {  // This case is excluded because this has a local minimum and does  // not find the optimum. This should not affect the correctness of  // this test since we are testing all the other 14 combinations of  // column activations.  //  //   IsSolveSuccessful<true, true, false, true>();  const TrustRegionStrategyType kStrategy = LEVENBERG_MARQUARDT;  IsTrustRegionSolveSuccessful<true,  true,  true,  true >(kStrategy);  IsTrustRegionSolveSuccessful<true,  true,  true,  false>(kStrategy);  IsTrustRegionSolveSuccessful<true,  false, true,  true >(kStrategy);  IsTrustRegionSolveSuccessful<false, true,  true,  true >(kStrategy);  IsTrustRegionSolveSuccessful<true,  true,  false, false>(kStrategy);  IsTrustRegionSolveSuccessful<true,  false, true,  false>(kStrategy);  IsTrustRegionSolveSuccessful<false, true,  true,  false>(kStrategy);  IsTrustRegionSolveSuccessful<true,  false, false, true >(kStrategy);  IsTrustRegionSolveSuccessful<false, true,  false, true >(kStrategy);  IsTrustRegionSolveSuccessful<false, false, true,  true >(kStrategy);  IsTrustRegionSolveSuccessful<true,  false, false, false>(kStrategy);  IsTrustRegionSolveSuccessful<false, true,  false, false>(kStrategy);  IsTrustRegionSolveSuccessful<false, false, true,  false>(kStrategy);  IsTrustRegionSolveSuccessful<false, false, false, true >(kStrategy);}TEST(TrustRegionMinimizer, PowellsSingularFunctionUsingDogleg) {  // The following two cases are excluded because they encounter a  // local minimum.  //  //  IsTrustRegionSolveSuccessful<true, true, false, true >(kStrategy);  //  IsTrustRegionSolveSuccessful<true,  true,  true,  true >(kStrategy);  const TrustRegionStrategyType kStrategy = DOGLEG;  IsTrustRegionSolveSuccessful<true,  true,  true,  false>(kStrategy);  IsTrustRegionSolveSuccessful<true,  false, true,  true >(kStrategy);  IsTrustRegionSolveSuccessful<false, true,  true,  true >(kStrategy);  IsTrustRegionSolveSuccessful<true,  true,  false, false>(kStrategy);  IsTrustRegionSolveSuccessful<true,  false, true,  false>(kStrategy);  IsTrustRegionSolveSuccessful<false, true,  true,  false>(kStrategy);  IsTrustRegionSolveSuccessful<true,  false, false, true >(kStrategy);  IsTrustRegionSolveSuccessful<false, true,  false, true >(kStrategy);  IsTrustRegionSolveSuccessful<false, false, true,  true >(kStrategy);  IsTrustRegionSolveSuccessful<true,  false, false, false>(kStrategy);  IsTrustRegionSolveSuccessful<false, true,  false, false>(kStrategy);  IsTrustRegionSolveSuccessful<false, false, true,  false>(kStrategy);  IsTrustRegionSolveSuccessful<false, false, false, true >(kStrategy);}class CurveCostFunction : public CostFunction { public:  CurveCostFunction(int num_vertices, double target_length)      : num_vertices_(num_vertices), target_length_(target_length) {    set_num_residuals(1);    for (int i = 0; i < num_vertices_; ++i) {      mutable_parameter_block_sizes()->push_back(2);    }  }  bool Evaluate(double const* const* parameters,                double* residuals,                double** jacobians) const {    residuals[0] = target_length_;    for (int i = 0; i < num_vertices_; ++i) {      int prev = (num_vertices_ + i - 1) % num_vertices_;      double length = 0.0;      for (int dim = 0; dim < 2; dim++) {        const double diff = parameters[prev][dim] - parameters[i][dim];        length += diff * diff;      }      residuals[0] -= sqrt(length);    }    if (jacobians == NULL) {      return true;    }    for (int i = 0; i < num_vertices_; ++i) {      if (jacobians[i] != NULL) {        int prev = (num_vertices_ + i - 1) % num_vertices_;        int next = (i + 1) % num_vertices_;        double u[2], v[2];        double norm_u = 0., norm_v = 0.;        for (int dim = 0; dim < 2; dim++) {          u[dim] = parameters[i][dim] - parameters[prev][dim];          norm_u += u[dim] * u[dim];          v[dim] = parameters[next][dim] - parameters[i][dim];          norm_v += v[dim] * v[dim];        }        norm_u = sqrt(norm_u);        norm_v = sqrt(norm_v);        for (int dim = 0; dim < 2; dim++) {          jacobians[i][dim] = 0.;          if (norm_u > std::numeric_limits< double >::min()) {            jacobians[i][dim] -= u[dim] / norm_u;          }          if (norm_v > std::numeric_limits< double >::min()) {            jacobians[i][dim] += v[dim] / norm_v;          }        }      }    }    return true;  } private:  int     num_vertices_;  double  target_length_;};TEST(TrustRegionMinimizer, JacobiScalingTest) {  int N = 6;  std::vector<double*> y(N);  const double pi = 3.1415926535897932384626433;  for (int i = 0; i < N; i++) {    double theta = i * 2. * pi/ static_cast< double >(N);    y[i] = new double[2];    y[i][0] = cos(theta);    y[i][1] = sin(theta);  }  Problem problem;  problem.AddResidualBlock(new CurveCostFunction(N, 10.), NULL, y);  Solver::Options options;  options.linear_solver_type = ceres::DENSE_QR;  Solver::Summary summary;  Solve(options, &problem, &summary);  EXPECT_LE(summary.final_cost, 1e-10);  for (int i = 0; i < N; i++) {    delete []y[i];  }}struct ExpCostFunctor {  template <typename T>  bool operator()(const T* const x, T* residual) const {    residual[0] = T(10.0) - exp(x[0]);    return true;  }  static CostFunction* Create() {    return new AutoDiffCostFunction<ExpCostFunctor, 1, 1>(        new ExpCostFunctor);  }};TEST(TrustRegionMinimizer, GradientToleranceConvergenceUpdatesStep) {  double x = 5;  Problem problem;  problem.AddResidualBlock(ExpCostFunctor::Create(), NULL, &x);  problem.SetParameterLowerBound(&x, 0, 3.0);  Solver::Options options;  Solver::Summary summary;  Solve(options, &problem, &summary);  EXPECT_NEAR(3.0, x, 1e-12);  const double expected_final_cost = 0.5 * pow(10.0 - exp(3.0), 2);  EXPECT_NEAR(expected_final_cost, summary.final_cost, 1e-12);}}  // namespace internal}  // namespace ceres
 |