| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2017 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: sameeragarwal@google.com (Sameer Agarwal)//// A simple C++ interface to the SuiteSparse and CHOLMOD libraries.#ifndef CERES_INTERNAL_SUITESPARSE_H_#define CERES_INTERNAL_SUITESPARSE_H_// This include must come before any #ifndef check on Ceres compile options.#include "ceres/internal/port.h"#ifndef CERES_NO_SUITESPARSE#include <cstring>#include <string>#include <vector>#include "SuiteSparseQR.hpp"#include "ceres/linear_solver.h"#include "ceres/sparse_cholesky.h"#include "cholmod.h"#include "glog/logging.h"// Before SuiteSparse version 4.2.0, cholmod_camd was only enabled// if SuiteSparse was compiled with Metis support. This makes// calling and linking into cholmod_camd problematic even though it// has nothing to do with Metis. This has been fixed reliably in// 4.2.0.//// The fix was actually committed in 4.1.0, but there is// some confusion about a silent update to the tar ball, so we are// being conservative and choosing the next minor version where// things are stable.#if (SUITESPARSE_VERSION < 4002)#define CERES_NO_CAMD#endif// UF_long is deprecated but SuiteSparse_long is only available in// newer versions of SuiteSparse. So for older versions of// SuiteSparse, we define SuiteSparse_long to be the same as UF_long,// which is what recent versions of SuiteSparse do anyways.#ifndef SuiteSparse_long#define SuiteSparse_long UF_long#endifnamespace ceres {namespace internal {class CompressedRowSparseMatrix;class TripletSparseMatrix;// The raw CHOLMOD and SuiteSparseQR libraries have a slightly// cumbersome c like calling format. This object abstracts it away and// provides the user with a simpler interface. The methods here cannot// be static as a cholmod_common object serves as a global variable// for all cholmod function calls.class SuiteSparse { public:  SuiteSparse();  ~SuiteSparse();  // Functions for building cholmod_sparse objects from sparse  // matrices stored in triplet form. The matrix A is not  // modifed. Called owns the result.  cholmod_sparse* CreateSparseMatrix(TripletSparseMatrix* A);  // This function works like CreateSparseMatrix, except that the  // return value corresponds to A' rather than A.  cholmod_sparse* CreateSparseMatrixTranspose(TripletSparseMatrix* A);  // Create a cholmod_sparse wrapper around the contents of A. This is  // a shallow object, which refers to the contents of A and does not  // use the SuiteSparse machinery to allocate memory.  cholmod_sparse CreateSparseMatrixTransposeView(CompressedRowSparseMatrix* A);  // Given a vector x, build a cholmod_dense vector of size out_size  // with the first in_size entries copied from x. If x is NULL, then  // an all zeros vector is returned. Caller owns the result.  cholmod_dense* CreateDenseVector(const double* x, int in_size, int out_size);  // The matrix A is scaled using the matrix whose diagonal is the  // vector scale. mode describes how scaling is applied. Possible  // values are CHOLMOD_ROW for row scaling - diag(scale) * A,  // CHOLMOD_COL for column scaling - A * diag(scale) and CHOLMOD_SYM  // for symmetric scaling which scales both the rows and the columns  // - diag(scale) * A * diag(scale).  void Scale(cholmod_dense* scale, int mode, cholmod_sparse* A) {     cholmod_scale(scale, mode, A, &cc_);  }  // Create and return a matrix m = A * A'. Caller owns the  // result. The matrix A is not modified.  cholmod_sparse* AATranspose(cholmod_sparse* A) {    cholmod_sparse*m =  cholmod_aat(A, NULL, A->nrow, 1, &cc_);    m->stype = 1;  // Pay attention to the upper triangular part.    return m;  }  // y = alpha * A * x + beta * y. Only y is modified.  void SparseDenseMultiply(cholmod_sparse* A, double alpha, double beta,                           cholmod_dense* x, cholmod_dense* y) {    double alpha_[2] = {alpha, 0};    double beta_[2] = {beta, 0};    cholmod_sdmult(A, 0, alpha_, beta_, x, y, &cc_);  }  // Find an ordering of A or AA' (if A is unsymmetric) that minimizes  // the fill-in in the Cholesky factorization of the corresponding  // matrix. This is done by using the AMD algorithm.  //  // Using this ordering, the symbolic Cholesky factorization of A (or  // AA') is computed and returned.  //  // A is not modified, only the pattern of non-zeros of A is used,  // the actual numerical values in A are of no consequence.  //  // message contains an explanation of the failures if any.  //  // Caller owns the result.  cholmod_factor* AnalyzeCholesky(cholmod_sparse* A, std::string* message);  cholmod_factor* BlockAnalyzeCholesky(cholmod_sparse* A,                                       const std::vector<int>& row_blocks,                                       const std::vector<int>& col_blocks,                                       std::string* message);  // If A is symmetric, then compute the symbolic Cholesky  // factorization of A(ordering, ordering). If A is unsymmetric, then  // compute the symbolic factorization of  // A(ordering,:) A(ordering,:)'.  //  // A is not modified, only the pattern of non-zeros of A is used,  // the actual numerical values in A are of no consequence.  //  // message contains an explanation of the failures if any.  //  // Caller owns the result.  cholmod_factor* AnalyzeCholeskyWithUserOrdering(      cholmod_sparse* A,      const std::vector<int>& ordering,      std::string* message);  // Perform a symbolic factorization of A without re-ordering A. No  // postordering of the elimination tree is performed. This ensures  // that the symbolic factor does not introduce an extra permutation  // on the matrix. See the documentation for CHOLMOD for more details.  //  // message contains an explanation of the failures if any.  cholmod_factor* AnalyzeCholeskyWithNaturalOrdering(cholmod_sparse* A,                                                     std::string* message);  // Use the symbolic factorization in L, to find the numerical  // factorization for the matrix A or AA^T. Return true if  // successful, false otherwise. L contains the numeric factorization  // on return.  //  // message contains an explanation of the failures if any.  LinearSolverTerminationType Cholesky(cholmod_sparse* A,                                       cholmod_factor* L,                                       std::string* message);  // Given a Cholesky factorization of a matrix A = LL^T, solve the  // linear system Ax = b, and return the result. If the Solve fails  // NULL is returned. Caller owns the result.  //  // message contains an explanation of the failures if any.  cholmod_dense* Solve(cholmod_factor* L, cholmod_dense* b, std::string* message);  // By virtue of the modeling layer in Ceres being block oriented,  // all the matrices used by Ceres are also block oriented. When  // doing sparse direct factorization of these matrices the  // fill-reducing ordering algorithms (in particular AMD) can either  // be run on the block or the scalar form of these matrices. The two  // SuiteSparse::AnalyzeCholesky methods allows the the client to  // compute the symbolic factorization of a matrix by either using  // AMD on the matrix or a user provided ordering of the rows.  //  // But since the underlying matrices are block oriented, it is worth  // running AMD on just the block structre of these matrices and then  // lifting these block orderings to a full scalar ordering. This  // preserves the block structure of the permuted matrix, and exposes  // more of the super-nodal structure of the matrix to the numerical  // factorization routines.  //  // Find the block oriented AMD ordering of a matrix A, whose row and  // column blocks are given by row_blocks, and col_blocks  // respectively. The matrix may or may not be symmetric. The entries  // of col_blocks do not need to sum to the number of columns in  // A. If this is the case, only the first sum(col_blocks) are used  // to compute the ordering.  bool BlockAMDOrdering(const cholmod_sparse* A,                        const std::vector<int>& row_blocks,                        const std::vector<int>& col_blocks,                        std::vector<int>* ordering);  // Find a fill reducing approximate minimum degree  // ordering. ordering is expected to be large enough to hold the  // ordering.  bool ApproximateMinimumDegreeOrdering(cholmod_sparse* matrix, int* ordering);  // Before SuiteSparse version 4.2.0, cholmod_camd was only enabled  // if SuiteSparse was compiled with Metis support. This makes  // calling and linking into cholmod_camd problematic even though it  // has nothing to do with Metis. This has been fixed reliably in  // 4.2.0.  //  // The fix was actually committed in 4.1.0, but there is  // some confusion about a silent update to the tar ball, so we are  // being conservative and choosing the next minor version where  // things are stable.  static bool IsConstrainedApproximateMinimumDegreeOrderingAvailable() {    return (SUITESPARSE_VERSION > 4001);  }  // Find a fill reducing approximate minimum degree  // ordering. constraints is an array which associates with each  // column of the matrix an elimination group. i.e., all columns in  // group 0 are eliminated first, all columns in group 1 are  // eliminated next etc. This function finds a fill reducing ordering  // that obeys these constraints.  //  // Calling ApproximateMinimumDegreeOrdering is equivalent to calling  // ConstrainedApproximateMinimumDegreeOrdering with a constraint  // array that puts all columns in the same elimination group.  //  // If CERES_NO_CAMD is defined then calling this function will  // result in a crash.  bool ConstrainedApproximateMinimumDegreeOrdering(cholmod_sparse* matrix,                                                   int* constraints,                                                   int* ordering);  void Free(cholmod_sparse* m) { cholmod_free_sparse(&m, &cc_); }  void Free(cholmod_dense* m)  { cholmod_free_dense(&m, &cc_);  }  void Free(cholmod_factor* m) { cholmod_free_factor(&m, &cc_); }  void Print(cholmod_sparse* m, const std::string& name) {    cholmod_print_sparse(m, const_cast<char*>(name.c_str()), &cc_);  }  void Print(cholmod_dense* m, const std::string& name) {    cholmod_print_dense(m, const_cast<char*>(name.c_str()), &cc_);  }  void Print(cholmod_triplet* m, const std::string& name) {    cholmod_print_triplet(m, const_cast<char*>(name.c_str()), &cc_);  }  cholmod_common* mutable_cc() { return &cc_; } private:  cholmod_common cc_;};class SuiteSparseCholesky : public SparseCholesky { public:  static SuiteSparseCholesky* Create(const OrderingType ordering_type);  // SparseCholesky interface.  virtual ~SuiteSparseCholesky();  virtual CompressedRowSparseMatrix::StorageType StorageType() const;  virtual LinearSolverTerminationType Factorize(      CompressedRowSparseMatrix* lhs, std::string* message);  virtual LinearSolverTerminationType Solve(const double* rhs,                                            double* solution,                                            std::string* message); private:  SuiteSparseCholesky(const OrderingType ordering_type);  const OrderingType ordering_type_;  SuiteSparse ss_;  cholmod_factor* factor_;};}  // namespace internal}  // namespace ceres#else  // CERES_NO_SUITESPARSEtypedef void cholmod_factor;namespace ceres {namespace internal {class SuiteSparse { public:  // Defining this static function even when SuiteSparse is not  // available, allows client code to check for the presence of CAMD  // without checking for the absence of the CERES_NO_CAMD symbol.  //  // This is safer because the symbol maybe missing due to a user  // accidently not including suitesparse.h in their code when  // checking for the symbol.  static bool IsConstrainedApproximateMinimumDegreeOrderingAvailable() {    return false;  }  void Free(void* arg) {}};}  // namespace internal}  // namespace ceres#endif  // CERES_NO_SUITESPARSE#endif  // CERES_INTERNAL_SUITESPARSE_H_
 |