| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110 | 
							- // Ceres Solver - A fast non-linear least squares minimizer
 
- // Copyright 2017 Google Inc. All rights reserved.
 
- // http://ceres-solver.org/
 
- //
 
- // Redistribution and use in source and binary forms, with or without
 
- // modification, are permitted provided that the following conditions are met:
 
- //
 
- // * Redistributions of source code must retain the above copyright notice,
 
- //   this list of conditions and the following disclaimer.
 
- // * Redistributions in binary form must reproduce the above copyright notice,
 
- //   this list of conditions and the following disclaimer in the documentation
 
- //   and/or other materials provided with the distribution.
 
- // * Neither the name of Google Inc. nor the names of its contributors may be
 
- //   used to endorse or promote products derived from this software without
 
- //   specific prior written permission.
 
- //
 
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 
- // POSSIBILITY OF SUCH DAMAGE.
 
- //
 
- // Author: sameeragarwal@google.com (Sameer Agarwal)
 
- #include "ceres/sparse_normal_cholesky_solver.h"
 
- #include <algorithm>
 
- #include <cstring>
 
- #include <ctime>
 
- #include "ceres/block_sparse_matrix.h"
 
- #include "ceres/inner_product_computer.h"
 
- #include "ceres/internal/eigen.h"
 
- #include "ceres/internal/scoped_ptr.h"
 
- #include "ceres/linear_solver.h"
 
- #include "ceres/sparse_cholesky.h"
 
- #include "ceres/triplet_sparse_matrix.h"
 
- #include "ceres/types.h"
 
- #include "ceres/wall_time.h"
 
- namespace ceres {
 
- namespace internal {
 
- SparseNormalCholeskySolver::SparseNormalCholeskySolver(
 
-     const LinearSolver::Options& options)
 
-     : options_(options) {
 
-   sparse_cholesky_.reset(
 
-       SparseCholesky::Create(options_.sparse_linear_algebra_library_type,
 
-                              options_.use_postordering ? AMD : NATURAL));
 
- }
 
- SparseNormalCholeskySolver::~SparseNormalCholeskySolver() {}
 
- LinearSolver::Summary SparseNormalCholeskySolver::SolveImpl(
 
-     BlockSparseMatrix* A,
 
-     const double* b,
 
-     const LinearSolver::PerSolveOptions& per_solve_options,
 
-     double* x) {
 
-   EventLogger event_logger("SparseNormalCholeskySolver::Solve");
 
-   LinearSolver::Summary summary;
 
-   summary.num_iterations = 1;
 
-   summary.termination_type = LINEAR_SOLVER_SUCCESS;
 
-   summary.message = "Success.";
 
-   const int num_cols = A->num_cols();
 
-   VectorRef(x, num_cols).setZero();
 
-   A->LeftMultiply(b, x);
 
-   event_logger.AddEvent("Compute RHS");
 
-   if (per_solve_options.D != NULL) {
 
-     // Temporarily append a diagonal block to the A matrix, but undo
 
-     // it before returning the matrix to the user.
 
-     scoped_ptr<BlockSparseMatrix> regularizer;
 
-     regularizer.reset(BlockSparseMatrix::CreateDiagonalMatrix(
 
-         per_solve_options.D, A->block_structure()->cols));
 
-     event_logger.AddEvent("Diagonal");
 
-     A->AppendRows(*regularizer);
 
-     event_logger.AddEvent("Append");
 
-   }
 
-   event_logger.AddEvent("Append Rows");
 
-   if (inner_product_computer_.get() == NULL) {
 
-     inner_product_computer_.reset(
 
-         InnerProductComputer::Create(*A, sparse_cholesky_->StorageType()));
 
-     event_logger.AddEvent("InnerProductComputer::Create");
 
-   }
 
-   inner_product_computer_->Compute();
 
-   event_logger.AddEvent("InnerProductComputer::Compute");
 
-   // TODO(sameeragarwal):
 
-   if (per_solve_options.D != NULL) {
 
-     A->DeleteRowBlocks(A->block_structure()->cols.size());
 
-   }
 
-   summary.termination_type = sparse_cholesky_->FactorAndSolve(
 
-       inner_product_computer_->mutable_result(), x, x, &summary.message);
 
-   event_logger.AddEvent("Factor & Solve");
 
-   return summary;
 
- }
 
- }  // namespace internal
 
- }  // namespace ceres
 
 
  |