| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2015 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: keir@google.com (Keir Mierle)#include "ceres/small_blas.h"#include <limits>#include "gtest/gtest.h"#include "ceres/internal/eigen.h"namespace ceres {namespace internal {const double kTolerance = 3.0 * std::numeric_limits<double>::epsilon();TEST(BLAS, MatrixMatrixMultiply) {  const int kRowA = 3;  const int kColA = 5;  Matrix A(kRowA, kColA);  A.setOnes();  const int kRowB = 5;  const int kColB = 7;  Matrix B(kRowB, kColB);  B.setOnes();  for (int row_stride_c = kRowA; row_stride_c < 3 * kRowA; ++row_stride_c) {    for (int col_stride_c = kColB; col_stride_c < 3 * kColB; ++col_stride_c) {      Matrix C(row_stride_c, col_stride_c);      C.setOnes();      Matrix C_plus = C;      Matrix C_minus = C;      Matrix C_assign = C;      Matrix C_plus_ref = C;      Matrix C_minus_ref = C;      Matrix C_assign_ref = C;      for (int start_row_c = 0; start_row_c + kRowA < row_stride_c; ++start_row_c) {        for (int start_col_c = 0; start_col_c + kColB < col_stride_c; ++start_col_c) {          C_plus_ref.block(start_row_c, start_col_c, kRowA, kColB) +=              A * B;          MatrixMatrixMultiply<kRowA, kColA, kRowB, kColB, 1>(              A.data(), kRowA, kColA,              B.data(), kRowB, kColB,              C_plus.data(), start_row_c, start_col_c, row_stride_c, col_stride_c);          EXPECT_NEAR((C_plus_ref - C_plus).norm(), 0.0, kTolerance)              << "C += A * B \n"              << "row_stride_c : " << row_stride_c << "\n"              << "col_stride_c : " << col_stride_c << "\n"              << "start_row_c  : " << start_row_c << "\n"              << "start_col_c  : " << start_col_c << "\n"              << "Cref : \n" << C_plus_ref << "\n"              << "C: \n" << C_plus;          C_minus_ref.block(start_row_c, start_col_c, kRowA, kColB) -=              A * B;          MatrixMatrixMultiply<kRowA, kColA, kRowB, kColB, -1>(              A.data(), kRowA, kColA,              B.data(), kRowB, kColB,              C_minus.data(), start_row_c, start_col_c, row_stride_c, col_stride_c);           EXPECT_NEAR((C_minus_ref - C_minus).norm(), 0.0, kTolerance)              << "C -= A * B \n"              << "row_stride_c : " << row_stride_c << "\n"              << "col_stride_c : " << col_stride_c << "\n"              << "start_row_c  : " << start_row_c << "\n"              << "start_col_c  : " << start_col_c << "\n"              << "Cref : \n" << C_minus_ref << "\n"              << "C: \n" << C_minus;          C_assign_ref.block(start_row_c, start_col_c, kRowA, kColB) =              A * B;          MatrixMatrixMultiply<kRowA, kColA, kRowB, kColB, 0>(              A.data(), kRowA, kColA,              B.data(), kRowB, kColB,              C_assign.data(), start_row_c, start_col_c, row_stride_c, col_stride_c);          EXPECT_NEAR((C_assign_ref - C_assign).norm(), 0.0, kTolerance)              << "C = A * B \n"              << "row_stride_c : " << row_stride_c << "\n"              << "col_stride_c : " << col_stride_c << "\n"              << "start_row_c  : " << start_row_c << "\n"              << "start_col_c  : " << start_col_c << "\n"              << "Cref : \n" << C_assign_ref << "\n"              << "C: \n" << C_assign;        }      }    }  }}TEST(BLAS, MatrixTransposeMatrixMultiply) {  const int kRowA = 5;  const int kColA = 3;  Matrix A(kRowA, kColA);  A.setOnes();  const int kRowB = 5;  const int kColB = 7;  Matrix B(kRowB, kColB);  B.setOnes();  for (int row_stride_c = kColA; row_stride_c < 3 * kColA; ++row_stride_c) {    for (int col_stride_c = kColB; col_stride_c <  3 * kColB; ++col_stride_c) {      Matrix C(row_stride_c, col_stride_c);      C.setOnes();      Matrix C_plus = C;      Matrix C_minus = C;      Matrix C_assign = C;      Matrix C_plus_ref = C;      Matrix C_minus_ref = C;      Matrix C_assign_ref = C;      for (int start_row_c = 0; start_row_c + kColA < row_stride_c; ++start_row_c) {        for (int start_col_c = 0; start_col_c + kColB < col_stride_c; ++start_col_c) {          C_plus_ref.block(start_row_c, start_col_c, kColA, kColB) +=              A.transpose() * B;          MatrixTransposeMatrixMultiply<kRowA, kColA, kRowB, kColB, 1>(              A.data(), kRowA, kColA,              B.data(), kRowB, kColB,              C_plus.data(), start_row_c, start_col_c, row_stride_c, col_stride_c);          EXPECT_NEAR((C_plus_ref - C_plus).norm(), 0.0, kTolerance)              << "C += A' * B \n"              << "row_stride_c : " << row_stride_c << "\n"              << "col_stride_c : " << col_stride_c << "\n"              << "start_row_c  : " << start_row_c << "\n"              << "start_col_c  : " << start_col_c << "\n"              << "Cref : \n" << C_plus_ref << "\n"              << "C: \n" << C_plus;          C_minus_ref.block(start_row_c, start_col_c, kColA, kColB) -=              A.transpose() * B;          MatrixTransposeMatrixMultiply<kRowA, kColA, kRowB, kColB, -1>(              A.data(), kRowA, kColA,              B.data(), kRowB, kColB,              C_minus.data(), start_row_c, start_col_c, row_stride_c, col_stride_c);          EXPECT_NEAR((C_minus_ref - C_minus).norm(), 0.0, kTolerance)              << "C -= A' * B \n"              << "row_stride_c : " << row_stride_c << "\n"              << "col_stride_c : " << col_stride_c << "\n"              << "start_row_c  : " << start_row_c << "\n"              << "start_col_c  : " << start_col_c << "\n"              << "Cref : \n" << C_minus_ref << "\n"              << "C: \n" << C_minus;          C_assign_ref.block(start_row_c, start_col_c, kColA, kColB) =              A.transpose() * B;          MatrixTransposeMatrixMultiply<kRowA, kColA, kRowB, kColB, 0>(              A.data(), kRowA, kColA,              B.data(), kRowB, kColB,              C_assign.data(), start_row_c, start_col_c, row_stride_c, col_stride_c);          EXPECT_NEAR((C_assign_ref - C_assign).norm(), 0.0, kTolerance)              << "C = A' * B \n"              << "row_stride_c : " << row_stride_c << "\n"              << "col_stride_c : " << col_stride_c << "\n"              << "start_row_c  : " << start_row_c << "\n"              << "start_col_c  : " << start_col_c << "\n"              << "Cref : \n" << C_assign_ref << "\n"              << "C: \n" << C_assign;        }      }    }  }}TEST(BLAS, MatrixVectorMultiply) {  const int kRowA = 5;  const int kColA = 3;  Matrix A(kRowA, kColA);  A.setOnes();  Vector b(kColA);  b.setOnes();  Vector c(kRowA);  c.setOnes();  Vector c_plus = c;  Vector c_minus = c;  Vector c_assign = c;  Vector c_plus_ref = c;  Vector c_minus_ref = c;  Vector c_assign_ref = c;  c_plus_ref += A * b;  MatrixVectorMultiply<kRowA, kColA, 1>(A.data(), kRowA, kColA,                                        b.data(),                                        c_plus.data());  EXPECT_NEAR((c_plus_ref - c_plus).norm(), 0.0, kTolerance)      << "c += A * b \n"      << "c_ref : \n" << c_plus_ref << "\n"      << "c: \n" << c_plus;  c_minus_ref -= A * b;  MatrixVectorMultiply<kRowA, kColA, -1>(A.data(), kRowA, kColA,                                                 b.data(),                                                 c_minus.data());  EXPECT_NEAR((c_minus_ref - c_minus).norm(), 0.0, kTolerance)      << "c += A * b \n"      << "c_ref : \n" << c_minus_ref << "\n"      << "c: \n" << c_minus;  c_assign_ref = A * b;  MatrixVectorMultiply<kRowA, kColA, 0>(A.data(), kRowA, kColA,                                                  b.data(),                                                  c_assign.data());  EXPECT_NEAR((c_assign_ref - c_assign).norm(), 0.0, kTolerance)      << "c += A * b \n"      << "c_ref : \n" << c_assign_ref << "\n"      << "c: \n" << c_assign;}TEST(BLAS, MatrixTransposeVectorMultiply) {  const int kRowA = 5;  const int kColA = 3;  Matrix A(kRowA, kColA);  A.setRandom();  Vector b(kRowA);  b.setRandom();  Vector c(kColA);  c.setOnes();  Vector c_plus = c;  Vector c_minus = c;  Vector c_assign = c;  Vector c_plus_ref = c;  Vector c_minus_ref = c;  Vector c_assign_ref = c;  c_plus_ref += A.transpose() * b;  MatrixTransposeVectorMultiply<kRowA, kColA, 1>(A.data(), kRowA, kColA,                                                 b.data(),                                                 c_plus.data());  EXPECT_NEAR((c_plus_ref - c_plus).norm(), 0.0, kTolerance)      << "c += A' * b \n"      << "c_ref : \n" << c_plus_ref << "\n"      << "c: \n" << c_plus;  c_minus_ref -= A.transpose() * b;  MatrixTransposeVectorMultiply<kRowA, kColA, -1>(A.data(), kRowA, kColA,                                                  b.data(),                                                  c_minus.data());  EXPECT_NEAR((c_minus_ref - c_minus).norm(), 0.0, kTolerance)      << "c += A' * b \n"      << "c_ref : \n" << c_minus_ref << "\n"      << "c: \n" << c_minus;  c_assign_ref = A.transpose() * b;  MatrixTransposeVectorMultiply<kRowA, kColA, 0>(A.data(), kRowA, kColA,                                                  b.data(),                                                  c_assign.data());  EXPECT_NEAR((c_assign_ref - c_assign).norm(), 0.0, kTolerance)      << "c += A' * b \n"      << "c_ref : \n" << c_assign_ref << "\n"      << "c: \n" << c_assign;}}  // namespace internal}  // namespace ceres
 |