| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2015 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: sameeragarwal@google.com (Sameer Agarwal)#ifndef CERES_INTERNAL_PRECONDITIONER_H_#define CERES_INTERNAL_PRECONDITIONER_H_#include <vector>#include "ceres/casts.h"#include "ceres/compressed_row_sparse_matrix.h"#include "ceres/linear_operator.h"#include "ceres/sparse_matrix.h"#include "ceres/types.h"namespace ceres {namespace internal {class BlockSparseMatrix;class SparseMatrix;class Preconditioner : public LinearOperator { public:  struct Options {    Options()        : type(JACOBI),          visibility_clustering_type(CANONICAL_VIEWS),          sparse_linear_algebra_library_type(SUITE_SPARSE),          num_threads(1),          row_block_size(Eigen::Dynamic),          e_block_size(Eigen::Dynamic),          f_block_size(Eigen::Dynamic) {    }    PreconditionerType type;    VisibilityClusteringType visibility_clustering_type;    SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type;    // If possible, how many threads the preconditioner can use.    int num_threads;    // Hints about the order in which the parameter blocks should be    // eliminated by the linear solver.    //    // For example if elimination_groups is a vector of size k, then    // the linear solver is informed that it should eliminate the    // parameter blocks 0 ... elimination_groups[0] - 1 first, and    // then elimination_groups[0] ... elimination_groups[1] - 1 and so    // on. Within each elimination group, the linear solver is free to    // choose how the parameter blocks are ordered. Different linear    // solvers have differing requirements on elimination_groups.    //    // The most common use is for Schur type solvers, where there    // should be at least two elimination groups and the first    // elimination group must form an independent set in the normal    // equations. The first elimination group corresponds to the    // num_eliminate_blocks in the Schur type solvers.    std::vector<int> elimination_groups;    // If the block sizes in a BlockSparseMatrix are fixed, then in    // some cases the Schur complement based solvers can detect and    // specialize on them.    //    // It is expected that these parameters are set programmatically    // rather than manually.    //    // Please see schur_complement_solver.h and schur_eliminator.h for    // more details.    int row_block_size;    int e_block_size;    int f_block_size;  };  // If the optimization problem is such that there are no remaining  // e-blocks, ITERATIVE_SCHUR with a Schur type preconditioner cannot  // be used. This function returns JACOBI if a preconditioner for  // ITERATIVE_SCHUR is used. The input preconditioner_type is  // returned otherwise.  static PreconditionerType PreconditionerForZeroEBlocks(      PreconditionerType preconditioner_type);  virtual ~Preconditioner();  // Update the numerical value of the preconditioner for the linear  // system:  //  //  |   A   | x = |b|  //  |diag(D)|     |0|  //  // for some vector b. It is important that the matrix A have the  // same block structure as the one used to construct this object.  //  // D can be NULL, in which case its interpreted as a diagonal matrix  // of size zero.  virtual bool Update(const LinearOperator& A, const double* D) = 0;  // LinearOperator interface. Since the operator is symmetric,  // LeftMultiply and num_cols are just calls to RightMultiply and  // num_rows respectively. Update() must be called before  // RightMultiply can be called.  virtual void RightMultiply(const double* x, double* y) const = 0;  virtual void LeftMultiply(const double* x, double* y) const {    return RightMultiply(x, y);  }  virtual int num_rows() const = 0;  virtual int num_cols() const {    return num_rows();  }};// This templated subclass of Preconditioner serves as a base class for// other preconditioners that depend on the particular matrix layout of// the underlying linear operator.template <typename MatrixType>class TypedPreconditioner : public Preconditioner { public:  virtual ~TypedPreconditioner() {}  virtual bool Update(const LinearOperator& A, const double* D) {    return UpdateImpl(*down_cast<const MatrixType*>(&A), D);  } private:  virtual bool UpdateImpl(const MatrixType& A, const double* D) = 0;};// Preconditioners that depend on acccess to the low level structure// of a SparseMatrix.typedef TypedPreconditioner<SparseMatrix>              SparseMatrixPreconditioner;               // NOLINTtypedef TypedPreconditioner<BlockSparseMatrix>         BlockSparseMatrixPreconditioner;          // NOLINTtypedef TypedPreconditioner<CompressedRowSparseMatrix> CompressedRowSparseMatrixPreconditioner;  // NOLINT// Wrap a SparseMatrix object as a preconditioner.class SparseMatrixPreconditionerWrapper : public SparseMatrixPreconditioner { public:  // Wrapper does NOT take ownership of the matrix pointer.  explicit SparseMatrixPreconditionerWrapper(const SparseMatrix* matrix);  virtual ~SparseMatrixPreconditionerWrapper();  // Preconditioner interface  virtual void RightMultiply(const double* x, double* y) const;  virtual int num_rows() const; private:  virtual bool UpdateImpl(const SparseMatrix& A, const double* D);  const SparseMatrix* matrix_;};}  // namespace internal}  // namespace ceres#endif  // CERES_INTERNAL_PRECONDITIONER_H_
 |