| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2015 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: sameeragarwal@google.com (Sameer Agarwal)#include "ceres/partitioned_matrix_view.h"#include <algorithm>#include <cstring>#include <vector>#include "ceres/block_sparse_matrix.h"#include "ceres/block_structure.h"#include "ceres/internal/eigen.h"#include "ceres/small_blas.h"#include "glog/logging.h"namespace ceres {namespace internal {template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>PartitionedMatrixView<kRowBlockSize, kEBlockSize, kFBlockSize>::PartitionedMatrixView(    const BlockSparseMatrix& matrix,    int num_col_blocks_e)    : matrix_(matrix),      num_col_blocks_e_(num_col_blocks_e) {  const CompressedRowBlockStructure* bs = matrix_.block_structure();  CHECK_NOTNULL(bs);  num_col_blocks_f_ = bs->cols.size() - num_col_blocks_e_;  // Compute the number of row blocks in E. The number of row blocks  // in E maybe less than the number of row blocks in the input matrix  // as some of the row blocks at the bottom may not have any  // e_blocks. For a definition of what an e_block is, please see  // explicit_schur_complement_solver.h  num_row_blocks_e_ = 0;  for (int r = 0; r < bs->rows.size(); ++r) {    const std::vector<Cell>& cells = bs->rows[r].cells;    if (cells[0].block_id < num_col_blocks_e_) {      ++num_row_blocks_e_;    }  }  // Compute the number of columns in E and F.  num_cols_e_ = 0;  num_cols_f_ = 0;  for (int c = 0; c < bs->cols.size(); ++c) {    const Block& block = bs->cols[c];    if (c < num_col_blocks_e_) {      num_cols_e_ += block.size;    } else {      num_cols_f_ += block.size;    }  }  CHECK_EQ(num_cols_e_ + num_cols_f_, matrix_.num_cols());}template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>PartitionedMatrixView<kRowBlockSize, kEBlockSize, kFBlockSize>::~PartitionedMatrixView() {}// The next four methods don't seem to be particularly cache// friendly. This is an artifact of how the BlockStructure of the// input matrix is constructed. These methods will benefit from// multithreading as well as improved data layout.template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>voidPartitionedMatrixView<kRowBlockSize, kEBlockSize, kFBlockSize>::RightMultiplyE(const double* x, double* y) const {  const CompressedRowBlockStructure* bs = matrix_.block_structure();  // Iterate over the first num_row_blocks_e_ row blocks, and multiply  // by the first cell in each row block.  const double* values = matrix_.values();  for (int r = 0; r < num_row_blocks_e_; ++r) {    const Cell& cell = bs->rows[r].cells[0];    const int row_block_pos = bs->rows[r].block.position;    const int row_block_size = bs->rows[r].block.size;    const int col_block_id = cell.block_id;    const int col_block_pos = bs->cols[col_block_id].position;    const int col_block_size = bs->cols[col_block_id].size;    MatrixVectorMultiply<kRowBlockSize, kEBlockSize, 1>(        values + cell.position, row_block_size, col_block_size,        x + col_block_pos,        y + row_block_pos);  }}template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>voidPartitionedMatrixView<kRowBlockSize, kEBlockSize, kFBlockSize>::RightMultiplyF(const double* x, double* y) const {  const CompressedRowBlockStructure* bs = matrix_.block_structure();  // Iterate over row blocks, and if the row block is in E, then  // multiply by all the cells except the first one which is of type  // E. If the row block is not in E (i.e its in the bottom  // num_row_blocks - num_row_blocks_e row blocks), then all the cells  // are of type F and multiply by them all.  const double* values = matrix_.values();  for (int r = 0; r < num_row_blocks_e_; ++r) {    const int row_block_pos = bs->rows[r].block.position;    const int row_block_size = bs->rows[r].block.size;    const std::vector<Cell>& cells = bs->rows[r].cells;    for (int c = 1; c < cells.size(); ++c) {      const int col_block_id = cells[c].block_id;      const int col_block_pos = bs->cols[col_block_id].position;      const int col_block_size = bs->cols[col_block_id].size;      MatrixVectorMultiply<kRowBlockSize, kFBlockSize, 1>(          values + cells[c].position, row_block_size, col_block_size,          x + col_block_pos - num_cols_e_,          y + row_block_pos);    }  }  for (int r = num_row_blocks_e_; r < bs->rows.size(); ++r) {    const int row_block_pos = bs->rows[r].block.position;    const int row_block_size = bs->rows[r].block.size;    const std::vector<Cell>& cells = bs->rows[r].cells;    for (int c = 0; c < cells.size(); ++c) {      const int col_block_id = cells[c].block_id;      const int col_block_pos = bs->cols[col_block_id].position;      const int col_block_size = bs->cols[col_block_id].size;      MatrixVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>(          values + cells[c].position, row_block_size, col_block_size,          x + col_block_pos - num_cols_e_,          y + row_block_pos);    }  }}template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>voidPartitionedMatrixView<kRowBlockSize, kEBlockSize, kFBlockSize>::LeftMultiplyE(const double* x, double* y) const {  const CompressedRowBlockStructure* bs = matrix_.block_structure();  // Iterate over the first num_row_blocks_e_ row blocks, and multiply  // by the first cell in each row block.  const double* values = matrix_.values();  for (int r = 0; r < num_row_blocks_e_; ++r) {    const Cell& cell = bs->rows[r].cells[0];    const int row_block_pos = bs->rows[r].block.position;    const int row_block_size = bs->rows[r].block.size;    const int col_block_id = cell.block_id;    const int col_block_pos = bs->cols[col_block_id].position;    const int col_block_size = bs->cols[col_block_id].size;    MatrixTransposeVectorMultiply<kRowBlockSize, kEBlockSize, 1>(        values + cell.position, row_block_size, col_block_size,        x + row_block_pos,        y + col_block_pos);  }}template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>voidPartitionedMatrixView<kRowBlockSize, kEBlockSize, kFBlockSize>::LeftMultiplyF(const double* x, double* y) const {  const CompressedRowBlockStructure* bs = matrix_.block_structure();  // Iterate over row blocks, and if the row block is in E, then  // multiply by all the cells except the first one which is of type  // E. If the row block is not in E (i.e its in the bottom  // num_row_blocks - num_row_blocks_e row blocks), then all the cells  // are of type F and multiply by them all.  const double* values = matrix_.values();  for (int r = 0; r < num_row_blocks_e_; ++r) {    const int row_block_pos = bs->rows[r].block.position;    const int row_block_size = bs->rows[r].block.size;    const std::vector<Cell>& cells = bs->rows[r].cells;    for (int c = 1; c < cells.size(); ++c) {      const int col_block_id = cells[c].block_id;      const int col_block_pos = bs->cols[col_block_id].position;      const int col_block_size = bs->cols[col_block_id].size;      MatrixTransposeVectorMultiply<kRowBlockSize, kFBlockSize, 1>(        values + cells[c].position, row_block_size, col_block_size,        x + row_block_pos,        y + col_block_pos - num_cols_e_);    }  }  for (int r = num_row_blocks_e_; r < bs->rows.size(); ++r) {    const int row_block_pos = bs->rows[r].block.position;    const int row_block_size = bs->rows[r].block.size;    const std::vector<Cell>& cells = bs->rows[r].cells;    for (int c = 0; c < cells.size(); ++c) {      const int col_block_id = cells[c].block_id;      const int col_block_pos = bs->cols[col_block_id].position;      const int col_block_size = bs->cols[col_block_id].size;      MatrixTransposeVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>(        values + cells[c].position, row_block_size, col_block_size,        x + row_block_pos,        y + col_block_pos - num_cols_e_);    }  }}// Given a range of columns blocks of a matrix m, compute the block// structure of the block diagonal of the matrix m(:,// start_col_block:end_col_block)'m(:, start_col_block:end_col_block)// and return a BlockSparseMatrix with the this block structure. The// caller owns the result.template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>BlockSparseMatrix*PartitionedMatrixView<kRowBlockSize, kEBlockSize, kFBlockSize>::CreateBlockDiagonalMatrixLayout(int start_col_block, int end_col_block) const {  const CompressedRowBlockStructure* bs = matrix_.block_structure();  CompressedRowBlockStructure* block_diagonal_structure =      new CompressedRowBlockStructure;  int block_position = 0;  int diagonal_cell_position = 0;  // Iterate over the column blocks, creating a new diagonal block for  // each column block.  for (int c = start_col_block; c < end_col_block; ++c) {    const Block& block = bs->cols[c];    block_diagonal_structure->cols.push_back(Block());    Block& diagonal_block = block_diagonal_structure->cols.back();    diagonal_block.size = block.size;    diagonal_block.position = block_position;    block_diagonal_structure->rows.push_back(CompressedRow());    CompressedRow& row = block_diagonal_structure->rows.back();    row.block = diagonal_block;    row.cells.push_back(Cell());    Cell& cell = row.cells.back();    cell.block_id = c - start_col_block;    cell.position = diagonal_cell_position;    block_position += block.size;    diagonal_cell_position += block.size * block.size;  }  // Build a BlockSparseMatrix with the just computed block  // structure.  return new BlockSparseMatrix(block_diagonal_structure);}template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>BlockSparseMatrix*PartitionedMatrixView<kRowBlockSize, kEBlockSize, kFBlockSize>::CreateBlockDiagonalEtE() const {  BlockSparseMatrix* block_diagonal =      CreateBlockDiagonalMatrixLayout(0, num_col_blocks_e_);  UpdateBlockDiagonalEtE(block_diagonal);  return block_diagonal;}template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>BlockSparseMatrix*PartitionedMatrixView<kRowBlockSize, kEBlockSize, kFBlockSize>::CreateBlockDiagonalFtF() const {  BlockSparseMatrix* block_diagonal =      CreateBlockDiagonalMatrixLayout(          num_col_blocks_e_, num_col_blocks_e_ + num_col_blocks_f_);  UpdateBlockDiagonalFtF(block_diagonal);  return block_diagonal;}// Similar to the code in RightMultiplyE, except instead of the matrix// vector multiply its an outer product.////    block_diagonal = block_diagonal(E'E)//template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>voidPartitionedMatrixView<kRowBlockSize, kEBlockSize, kFBlockSize>::UpdateBlockDiagonalEtE(    BlockSparseMatrix* block_diagonal) const {  const CompressedRowBlockStructure* bs = matrix_.block_structure();  const CompressedRowBlockStructure* block_diagonal_structure =      block_diagonal->block_structure();  block_diagonal->SetZero();  const double* values = matrix_.values();  for (int r = 0; r < num_row_blocks_e_ ; ++r) {    const Cell& cell = bs->rows[r].cells[0];    const int row_block_size = bs->rows[r].block.size;    const int block_id = cell.block_id;    const int col_block_size = bs->cols[block_id].size;    const int cell_position =        block_diagonal_structure->rows[block_id].cells[0].position;    MatrixTransposeMatrixMultiply        <kRowBlockSize, kEBlockSize, kRowBlockSize, kEBlockSize, 1>(            values + cell.position, row_block_size, col_block_size,            values + cell.position, row_block_size, col_block_size,            block_diagonal->mutable_values() + cell_position,            0, 0, col_block_size, col_block_size);  }}// Similar to the code in RightMultiplyF, except instead of the matrix// vector multiply its an outer product.////   block_diagonal = block_diagonal(F'F)//template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>voidPartitionedMatrixView<kRowBlockSize, kEBlockSize, kFBlockSize>::UpdateBlockDiagonalFtF(BlockSparseMatrix* block_diagonal) const {  const CompressedRowBlockStructure* bs = matrix_.block_structure();  const CompressedRowBlockStructure* block_diagonal_structure =      block_diagonal->block_structure();  block_diagonal->SetZero();  const double* values = matrix_.values();  for (int r = 0; r < num_row_blocks_e_; ++r) {    const int row_block_size = bs->rows[r].block.size;    const std::vector<Cell>& cells = bs->rows[r].cells;    for (int c = 1; c < cells.size(); ++c) {      const int col_block_id = cells[c].block_id;      const int col_block_size = bs->cols[col_block_id].size;      const int diagonal_block_id = col_block_id - num_col_blocks_e_;      const int cell_position =          block_diagonal_structure->rows[diagonal_block_id].cells[0].position;      MatrixTransposeMatrixMultiply          <kRowBlockSize, kFBlockSize, kRowBlockSize, kFBlockSize, 1>(              values + cells[c].position, row_block_size, col_block_size,              values + cells[c].position, row_block_size, col_block_size,              block_diagonal->mutable_values() + cell_position,              0, 0, col_block_size, col_block_size);    }  }  for (int r = num_row_blocks_e_; r < bs->rows.size(); ++r) {    const int row_block_size = bs->rows[r].block.size;    const std::vector<Cell>& cells = bs->rows[r].cells;    for (int c = 0; c < cells.size(); ++c) {      const int col_block_id = cells[c].block_id;      const int col_block_size = bs->cols[col_block_id].size;      const int diagonal_block_id = col_block_id - num_col_blocks_e_;      const int cell_position =          block_diagonal_structure->rows[diagonal_block_id].cells[0].position;      MatrixTransposeMatrixMultiply          <Eigen::Dynamic, Eigen::Dynamic, Eigen::Dynamic, Eigen::Dynamic, 1>(              values + cells[c].position, row_block_size, col_block_size,              values + cells[c].position, row_block_size, col_block_size,              block_diagonal->mutable_values() + cell_position,              0, 0, col_block_size, col_block_size);    }  }}}  // namespace internal}  // namespace ceres
 |