| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2015 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: sameeragarwal@google.com (Sameer Agarwal)//// Limited memory positive definite approximation to the inverse// Hessian, using the LBFGS algorithm#ifndef CERES_INTERNAL_LOW_RANK_INVERSE_HESSIAN_H_#define CERES_INTERNAL_LOW_RANK_INVERSE_HESSIAN_H_#include <list>#include "ceres/internal/eigen.h"#include "ceres/linear_operator.h"namespace ceres {namespace internal {// LowRankInverseHessian is a positive definite approximation to the// Hessian using the limited memory variant of the// Broyden-Fletcher-Goldfarb-Shanno (BFGS)secant formula for// approximating the Hessian.//// Other update rules like the Davidon-Fletcher-Powell (DFP) are// possible, but the BFGS rule is considered the best performing one.//// The limited memory variant was developed by Nocedal and further// enhanced with scaling rule by Byrd, Nocedal and Schanbel.//// Nocedal, J. (1980). "Updating Quasi-Newton Matrices with Limited// Storage". Mathematics of Computation 35 (151): 773–782.//// Byrd, R. H.; Nocedal, J.; Schnabel, R. B. (1994).// "Representations of Quasi-Newton Matrices and their use in// Limited Memory Methods". Mathematical Programming 63 (4):class LowRankInverseHessian : public LinearOperator { public:  // num_parameters is the row/column size of the Hessian.  // max_num_corrections is the rank of the Hessian approximation.  // use_approximate_eigenvalue_scaling controls whether the initial  // inverse Hessian used during Right/LeftMultiply() is scaled by  // the approximate eigenvalue of the true inverse Hessian at the  // current operating point.  // The approximation uses:  // 2 * max_num_corrections * num_parameters + max_num_corrections  // doubles.  LowRankInverseHessian(int num_parameters,                        int max_num_corrections,                        bool use_approximate_eigenvalue_scaling);  virtual ~LowRankInverseHessian() {}  // Update the low rank approximation. delta_x is the change in the  // domain of Hessian, and delta_gradient is the change in the  // gradient.  The update copies the delta_x and delta_gradient  // vectors, and gets rid of the oldest delta_x and delta_gradient  // vectors if the number of corrections is already equal to  // max_num_corrections.  bool Update(const Vector& delta_x, const Vector& delta_gradient);  // LinearOperator interface  virtual void RightMultiply(const double* x, double* y) const;  virtual void LeftMultiply(const double* x, double* y) const {    RightMultiply(x, y);  }  virtual int num_rows() const { return num_parameters_; }  virtual int num_cols() const { return num_parameters_; } private:  const int num_parameters_;  const int max_num_corrections_;  const bool use_approximate_eigenvalue_scaling_;  double approximate_eigenvalue_scale_;  ColMajorMatrix delta_x_history_;  ColMajorMatrix delta_gradient_history_;  Vector delta_x_dot_delta_gradient_;  std::list<int> indices_;};}  // namespace internal}  // namespace ceres#endif  // CERES_INTERNAL_LOW_RANK_INVERSE_HESSIAN_H_
 |