| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2015 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: sameeragarwal@google.com (Sameer Agarwal)#include <list>#include "ceres/internal/eigen.h"#include "ceres/low_rank_inverse_hessian.h"#include "glog/logging.h"namespace ceres {namespace internal {using std::list;// The (L)BFGS algorithm explicitly requires that the secant equation:////   B_{k+1} * s_k = y_k//// Is satisfied at each iteration, where B_{k+1} is the approximated// Hessian at the k+1-th iteration, s_k = (x_{k+1} - x_{k}) and// y_k = (grad_{k+1} - grad_{k}). As the approximated Hessian must be// positive definite, this is equivalent to the condition:////   s_k^T * y_k > 0     [s_k^T * B_{k+1} * s_k = s_k^T * y_k > 0]//// This condition would always be satisfied if the function was strictly// convex, alternatively, it is always satisfied provided that a Wolfe line// search is used (even if the function is not strictly convex).  See [1]// (p138) for a proof.//// Although Ceres will always use a Wolfe line search when using (L)BFGS,// practical implementation considerations mean that the line search// may return a point that satisfies only the Armijo condition, and thus// could violate the Secant equation.  As such, we will only use a step// to update the Hessian approximation if:////   s_k^T * y_k > tolerance//// It is important that tolerance is very small (and >=0), as otherwise we// might skip the update too often and fail to capture important curvature// information in the Hessian.  For example going from 1e-10 -> 1e-14 improves// the NIST benchmark score from 43/54 to 53/54.//// [1] Nocedal J., Wright S., Numerical Optimization, 2nd Ed. Springer, 1999.//// TODO(alexs.mac): Consider using Damped BFGS update instead of// skipping update.const double kLBFGSSecantConditionHessianUpdateTolerance = 1e-14;LowRankInverseHessian::LowRankInverseHessian(    int num_parameters,    int max_num_corrections,    bool use_approximate_eigenvalue_scaling)    : num_parameters_(num_parameters),      max_num_corrections_(max_num_corrections),      use_approximate_eigenvalue_scaling_(use_approximate_eigenvalue_scaling),      approximate_eigenvalue_scale_(1.0),      delta_x_history_(num_parameters, max_num_corrections),      delta_gradient_history_(num_parameters, max_num_corrections),      delta_x_dot_delta_gradient_(max_num_corrections) {}bool LowRankInverseHessian::Update(const Vector& delta_x,                                   const Vector& delta_gradient) {  const double delta_x_dot_delta_gradient = delta_x.dot(delta_gradient);  if (delta_x_dot_delta_gradient <=      kLBFGSSecantConditionHessianUpdateTolerance) {    VLOG(2) << "Skipping L-BFGS Update, delta_x_dot_delta_gradient too "            << "small: " << delta_x_dot_delta_gradient << ", tolerance: "            << kLBFGSSecantConditionHessianUpdateTolerance            << " (Secant condition).";    return false;  }  int next = indices_.size();  // Once the size of the list reaches max_num_corrections_, simulate  // a circular buffer by removing the first element of the list and  // making it the next position where the LBFGS history is stored.  if (next == max_num_corrections_) {    next = indices_.front();    indices_.pop_front();  }  indices_.push_back(next);  delta_x_history_.col(next) = delta_x;  delta_gradient_history_.col(next) = delta_gradient;  delta_x_dot_delta_gradient_(next) = delta_x_dot_delta_gradient;  approximate_eigenvalue_scale_ =      delta_x_dot_delta_gradient / delta_gradient.squaredNorm();  return true;}void LowRankInverseHessian::RightMultiply(const double* x_ptr,                                          double* y_ptr) const {  ConstVectorRef gradient(x_ptr, num_parameters_);  VectorRef search_direction(y_ptr, num_parameters_);  search_direction = gradient;  const int num_corrections = indices_.size();  Vector alpha(num_corrections);  for (list<int>::const_reverse_iterator it = indices_.rbegin();       it != indices_.rend();       ++it) {    const double alpha_i = delta_x_history_.col(*it).dot(search_direction) /        delta_x_dot_delta_gradient_(*it);    search_direction -= alpha_i * delta_gradient_history_.col(*it);    alpha(*it) = alpha_i;  }  if (use_approximate_eigenvalue_scaling_) {    // Rescale the initial inverse Hessian approximation (H_0) to be iteratively    // updated so that it is of similar 'size' to the true inverse Hessian along    // the most recent search direction.  As shown in [1]:    //    //   \gamma_k = (delta_gradient_{k-1}' * delta_x_{k-1}) /    //              (delta_gradient_{k-1}' * delta_gradient_{k-1})    //    // Satisfies:    //    //   (1 / \lambda_m) <= \gamma_k <= (1 / \lambda_1)    //    // Where \lambda_1 & \lambda_m are the smallest and largest eigenvalues of    // the true Hessian (not the inverse) along the most recent search direction    // respectively.  Thus \gamma is an approximate eigenvalue of the true    // inverse Hessian, and choosing: H_0 = I * \gamma will yield a starting    // point that has a similar scale to the true inverse Hessian.  This    // technique is widely reported to often improve convergence, however this    // is not universally true, particularly if there are errors in the initial    // jacobians, or if there are significant differences in the sensitivity    // of the problem to the parameters (i.e. the range of the magnitudes of    // the components of the gradient is large).    //    // The original origin of this rescaling trick is somewhat unclear, the    // earliest reference appears to be Oren [1], however it is widely discussed    // without specific attributation in various texts including [2] (p143/178).    //    // [1] Oren S.S., Self-scaling variable metric (SSVM) algorithms Part II:    //     Implementation and experiments, Management Science,    //     20(5), 863-874, 1974.    // [2] Nocedal J., Wright S., Numerical Optimization, Springer, 1999.    search_direction *= approximate_eigenvalue_scale_;    VLOG(4) << "Applying approximate_eigenvalue_scale: "            << approximate_eigenvalue_scale_ << " to initial inverse Hessian "            << "approximation.";  }  for (list<int>::const_iterator it = indices_.begin();       it != indices_.end();       ++it) {    const double beta = delta_gradient_history_.col(*it).dot(search_direction) /        delta_x_dot_delta_gradient_(*it);    search_direction += delta_x_history_.col(*it) * (alpha(*it) - beta);  }}}  // namespace internal}  // namespace ceres
 |