| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372 | 
							- // Ceres Solver - A fast non-linear least squares minimizer
 
- // Copyright 2015 Google Inc. All rights reserved.
 
- // http://ceres-solver.org/
 
- //
 
- // Redistribution and use in source and binary forms, with or without
 
- // modification, are permitted provided that the following conditions are met:
 
- //
 
- // * Redistributions of source code must retain the above copyright notice,
 
- //   this list of conditions and the following disclaimer.
 
- // * Redistributions in binary form must reproduce the above copyright notice,
 
- //   this list of conditions and the following disclaimer in the documentation
 
- //   and/or other materials provided with the distribution.
 
- // * Neither the name of Google Inc. nor the names of its contributors may be
 
- //   used to endorse or promote products derived from this software without
 
- //   specific prior written permission.
 
- //
 
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 
- // POSSIBILITY OF SUCH DAMAGE.
 
- //
 
- // Author: sameeragarwal@google.com (Sameer Agarwal)
 
- //
 
- // Abstract interface for objects solving linear systems of various
 
- // kinds.
 
- #ifndef CERES_INTERNAL_LINEAR_SOLVER_H_
 
- #define CERES_INTERNAL_LINEAR_SOLVER_H_
 
- #include <cstddef>
 
- #include <map>
 
- #include <string>
 
- #include <vector>
 
- #include "ceres/block_sparse_matrix.h"
 
- #include "ceres/casts.h"
 
- #include "ceres/compressed_row_sparse_matrix.h"
 
- #include "ceres/dense_sparse_matrix.h"
 
- #include "ceres/execution_summary.h"
 
- #include "ceres/triplet_sparse_matrix.h"
 
- #include "ceres/types.h"
 
- #include "glog/logging.h"
 
- namespace ceres {
 
- namespace internal {
 
- enum LinearSolverTerminationType {
 
-   // Termination criterion was met.
 
-   LINEAR_SOLVER_SUCCESS,
 
-   // Solver ran for max_num_iterations and terminated before the
 
-   // termination tolerance could be satisfied.
 
-   LINEAR_SOLVER_NO_CONVERGENCE,
 
-   // Solver was terminated due to numerical problems, generally due to
 
-   // the linear system being poorly conditioned.
 
-   LINEAR_SOLVER_FAILURE,
 
-   // Solver failed with a fatal error that cannot be recovered from,
 
-   // e.g. CHOLMOD ran out of memory when computing the symbolic or
 
-   // numeric factorization or an underlying library was called with
 
-   // the wrong arguments.
 
-   LINEAR_SOLVER_FATAL_ERROR
 
- };
 
- // This enum controls the fill-reducing ordering a sparse linear
 
- // algebra library should use before computing a sparse factorization
 
- // (usually Cholesky).
 
- enum OrderingType {
 
-   NATURAL, // Do not re-order the matrix. This is useful when the
 
-            // matrix has been ordered using a fill-reducing ordering
 
-            // already.
 
-   AMD      // Use the Approximate Minimum Degree algorithm to re-order
 
-            // the matrix.
 
- };
 
- class LinearOperator;
 
- // Abstract base class for objects that implement algorithms for
 
- // solving linear systems
 
- //
 
- //   Ax = b
 
- //
 
- // It is expected that a single instance of a LinearSolver object
 
- // maybe used multiple times for solving multiple linear systems with
 
- // the same sparsity structure. This allows them to cache and reuse
 
- // information across solves. This means that calling Solve on the
 
- // same LinearSolver instance with two different linear systems will
 
- // result in undefined behaviour.
 
- //
 
- // Subclasses of LinearSolver use two structs to configure themselves.
 
- // The Options struct configures the LinearSolver object for its
 
- // lifetime. The PerSolveOptions struct is used to specify options for
 
- // a particular Solve call.
 
- class LinearSolver {
 
-  public:
 
-   struct Options {
 
-     Options()
 
-         : type(SPARSE_NORMAL_CHOLESKY),
 
-           preconditioner_type(JACOBI),
 
-           visibility_clustering_type(CANONICAL_VIEWS),
 
-           dense_linear_algebra_library_type(EIGEN),
 
-           sparse_linear_algebra_library_type(SUITE_SPARSE),
 
-           use_postordering(false),
 
-           dynamic_sparsity(false),
 
-           use_explicit_schur_complement(false),
 
-           min_num_iterations(1),
 
-           max_num_iterations(1),
 
-           num_threads(1),
 
-           residual_reset_period(10),
 
-           row_block_size(Eigen::Dynamic),
 
-           e_block_size(Eigen::Dynamic),
 
-           f_block_size(Eigen::Dynamic) {
 
-     }
 
-     LinearSolverType type;
 
-     PreconditionerType preconditioner_type;
 
-     VisibilityClusteringType visibility_clustering_type;
 
-     DenseLinearAlgebraLibraryType dense_linear_algebra_library_type;
 
-     SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type;
 
-     // See solver.h for information about these flags.
 
-     bool use_postordering;
 
-     bool dynamic_sparsity;
 
-     bool use_explicit_schur_complement;
 
-     // Number of internal iterations that the solver uses. This
 
-     // parameter only makes sense for iterative solvers like CG.
 
-     int min_num_iterations;
 
-     int max_num_iterations;
 
-     // If possible, how many threads can the solver use.
 
-     int num_threads;
 
-     // Hints about the order in which the parameter blocks should be
 
-     // eliminated by the linear solver.
 
-     //
 
-     // For example if elimination_groups is a vector of size k, then
 
-     // the linear solver is informed that it should eliminate the
 
-     // parameter blocks 0 ... elimination_groups[0] - 1 first, and
 
-     // then elimination_groups[0] ... elimination_groups[1] - 1 and so
 
-     // on. Within each elimination group, the linear solver is free to
 
-     // choose how the parameter blocks are ordered. Different linear
 
-     // solvers have differing requirements on elimination_groups.
 
-     //
 
-     // The most common use is for Schur type solvers, where there
 
-     // should be at least two elimination groups and the first
 
-     // elimination group must form an independent set in the normal
 
-     // equations. The first elimination group corresponds to the
 
-     // num_eliminate_blocks in the Schur type solvers.
 
-     std::vector<int> elimination_groups;
 
-     // Iterative solvers, e.g. Preconditioned Conjugate Gradients
 
-     // maintain a cheap estimate of the residual which may become
 
-     // inaccurate over time. Thus for non-zero values of this
 
-     // parameter, the solver can be told to recalculate the value of
 
-     // the residual using a |b - Ax| evaluation.
 
-     int residual_reset_period;
 
-     // If the block sizes in a BlockSparseMatrix are fixed, then in
 
-     // some cases the Schur complement based solvers can detect and
 
-     // specialize on them.
 
-     //
 
-     // It is expected that these parameters are set programmatically
 
-     // rather than manually.
 
-     //
 
-     // Please see schur_complement_solver.h and schur_eliminator.h for
 
-     // more details.
 
-     int row_block_size;
 
-     int e_block_size;
 
-     int f_block_size;
 
-   };
 
-   // Options for the Solve method.
 
-   struct PerSolveOptions {
 
-     PerSolveOptions()
 
-         : D(NULL),
 
-           preconditioner(NULL),
 
-           r_tolerance(0.0),
 
-           q_tolerance(0.0) {
 
-     }
 
-     // This option only makes sense for unsymmetric linear solvers
 
-     // that can solve rectangular linear systems.
 
-     //
 
-     // Given a matrix A, an optional diagonal matrix D as a vector,
 
-     // and a vector b, the linear solver will solve for
 
-     //
 
-     //   | A | x = | b |
 
-     //   | D |     | 0 |
 
-     //
 
-     // If D is null, then it is treated as zero, and the solver returns
 
-     // the solution to
 
-     //
 
-     //   A x = b
 
-     //
 
-     // In either case, x is the vector that solves the following
 
-     // optimization problem.
 
-     //
 
-     //   arg min_x ||Ax - b||^2 + ||Dx||^2
 
-     //
 
-     // Here A is a matrix of size m x n, with full column rank. If A
 
-     // does not have full column rank, the results returned by the
 
-     // solver cannot be relied on. D, if it is not null is an array of
 
-     // size n.  b is an array of size m and x is an array of size n.
 
-     double * D;
 
-     // This option only makes sense for iterative solvers.
 
-     //
 
-     // In general the performance of an iterative linear solver
 
-     // depends on the condition number of the matrix A. For example
 
-     // the convergence rate of the conjugate gradients algorithm
 
-     // is proportional to the square root of the condition number.
 
-     //
 
-     // One particularly useful technique for improving the
 
-     // conditioning of a linear system is to precondition it. In its
 
-     // simplest form a preconditioner is a matrix M such that instead
 
-     // of solving Ax = b, we solve the linear system AM^{-1} y = b
 
-     // instead, where M is such that the condition number k(AM^{-1})
 
-     // is smaller than the conditioner k(A). Given the solution to
 
-     // this system, x = M^{-1} y. The iterative solver takes care of
 
-     // the mechanics of solving the preconditioned system and
 
-     // returning the corrected solution x. The user only needs to
 
-     // supply a linear operator.
 
-     //
 
-     // A null preconditioner is equivalent to an identity matrix being
 
-     // used a preconditioner.
 
-     LinearOperator* preconditioner;
 
-     // The following tolerance related options only makes sense for
 
-     // iterative solvers. Direct solvers ignore them.
 
-     // Solver terminates when
 
-     //
 
-     //   |Ax - b| <= r_tolerance * |b|.
 
-     //
 
-     // This is the most commonly used termination criterion for
 
-     // iterative solvers.
 
-     double r_tolerance;
 
-     // For PSD matrices A, let
 
-     //
 
-     //   Q(x) = x'Ax - 2b'x
 
-     //
 
-     // be the cost of the quadratic function defined by A and b. Then,
 
-     // the solver terminates at iteration i if
 
-     //
 
-     //   i * (Q(x_i) - Q(x_i-1)) / Q(x_i) < q_tolerance.
 
-     //
 
-     // This termination criterion is more useful when using CG to
 
-     // solve the Newton step. This particular convergence test comes
 
-     // from Stephen Nash's work on truncated Newton
 
-     // methods. References:
 
-     //
 
-     //   1. Stephen G. Nash & Ariela Sofer, Assessing A Search
 
-     //      Direction Within A Truncated Newton Method, Operation
 
-     //      Research Letters 9(1990) 219-221.
 
-     //
 
-     //   2. Stephen G. Nash, A Survey of Truncated Newton Methods,
 
-     //      Journal of Computational and Applied Mathematics,
 
-     //      124(1-2), 45-59, 2000.
 
-     //
 
-     double q_tolerance;
 
-   };
 
-   // Summary of a call to the Solve method. We should move away from
 
-   // the true/false method for determining solver success. We should
 
-   // let the summary object do the talking.
 
-   struct Summary {
 
-     Summary()
 
-         : residual_norm(0.0),
 
-           num_iterations(-1),
 
-           termination_type(LINEAR_SOLVER_FAILURE) {
 
-     }
 
-     double residual_norm;
 
-     int num_iterations;
 
-     LinearSolverTerminationType termination_type;
 
-     std::string message;
 
-   };
 
-   // If the optimization problem is such that there are no remaining
 
-   // e-blocks, a Schur type linear solver cannot be used. If the
 
-   // linear solver is of Schur type, this function implements a policy
 
-   // to select an alternate nearest linear solver to the one selected
 
-   // by the user. The input linear_solver_type is returned otherwise.
 
-   static LinearSolverType LinearSolverForZeroEBlocks(
 
-       LinearSolverType linear_solver_type);
 
-   virtual ~LinearSolver();
 
-   // Solve Ax = b.
 
-   virtual Summary Solve(LinearOperator* A,
 
-                         const double* b,
 
-                         const PerSolveOptions& per_solve_options,
 
-                         double* x) = 0;
 
-   // The following two methods return copies instead of references so
 
-   // that the base class implementation does not have to worry about
 
-   // life time issues. Further, these calls are not expected to be
 
-   // frequent or performance sensitive.
 
-   virtual std::map<std::string, int> CallStatistics() const {
 
-     return std::map<std::string, int>();
 
-   }
 
-   virtual std::map<std::string, double> TimeStatistics() const {
 
-     return std::map<std::string, double>();
 
-   }
 
-   // Factory
 
-   static LinearSolver* Create(const Options& options);
 
- };
 
- // This templated subclass of LinearSolver serves as a base class for
 
- // other linear solvers that depend on the particular matrix layout of
 
- // the underlying linear operator. For example some linear solvers
 
- // need low level access to the TripletSparseMatrix implementing the
 
- // LinearOperator interface. This class hides those implementation
 
- // details behind a private virtual method, and has the Solve method
 
- // perform the necessary upcasting.
 
- template <typename MatrixType>
 
- class TypedLinearSolver : public LinearSolver {
 
-  public:
 
-   virtual ~TypedLinearSolver() {}
 
-   virtual LinearSolver::Summary Solve(
 
-       LinearOperator* A,
 
-       const double* b,
 
-       const LinearSolver::PerSolveOptions& per_solve_options,
 
-       double* x) {
 
-     ScopedExecutionTimer total_time("LinearSolver::Solve", &execution_summary_);
 
-     CHECK_NOTNULL(A);
 
-     CHECK_NOTNULL(b);
 
-     CHECK_NOTNULL(x);
 
-     return SolveImpl(down_cast<MatrixType*>(A), b, per_solve_options, x);
 
-   }
 
-   virtual std::map<std::string, int> CallStatistics() const {
 
-     return execution_summary_.calls();
 
-   }
 
-   virtual std::map<std::string, double> TimeStatistics() const {
 
-     return execution_summary_.times();
 
-   }
 
-  private:
 
-   virtual LinearSolver::Summary SolveImpl(
 
-       MatrixType* A,
 
-       const double* b,
 
-       const LinearSolver::PerSolveOptions& per_solve_options,
 
-       double* x) = 0;
 
-   ExecutionSummary execution_summary_;
 
- };
 
- // Linear solvers that depend on acccess to the low level structure of
 
- // a SparseMatrix.
 
- typedef TypedLinearSolver<BlockSparseMatrix>         BlockSparseMatrixSolver;          // NOLINT
 
- typedef TypedLinearSolver<CompressedRowSparseMatrix> CompressedRowSparseMatrixSolver;  // NOLINT
 
- typedef TypedLinearSolver<DenseSparseMatrix>         DenseSparseMatrixSolver;          // NOLINT
 
- typedef TypedLinearSolver<TripletSparseMatrix>       TripletSparseMatrixSolver;        // NOLINT
 
- }  // namespace internal
 
- }  // namespace ceres
 
- #endif  // CERES_INTERNAL_LINEAR_SOLVER_H_
 
 
  |