| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2015 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: sameeragarwal@google.com (Sameer Agarwal)//// Interface for and implementation of various Line search algorithms.#ifndef CERES_INTERNAL_LINE_SEARCH_H_#define CERES_INTERNAL_LINE_SEARCH_H_#include <string>#include <vector>#include "ceres/function_sample.h"#include "ceres/internal/eigen.h"#include "ceres/internal/port.h"#include "ceres/types.h"namespace ceres {namespace internal {class Evaluator;class LineSearchFunction;// Line search is another name for a one dimensional optimization// algorithm. The name "line search" comes from the fact one// dimensional optimization problems that arise as subproblems of// general multidimensional optimization problems.//// While finding the exact minimum of a one dimensionl function is// hard, instances of LineSearch find a point that satisfies a// sufficient decrease condition. Depending on the particular// condition used, we get a variety of different line search// algorithms, e.g., Armijo, Wolfe etc.class LineSearch { public:  struct Summary;  struct Options {    Options()        : interpolation_type(CUBIC),          sufficient_decrease(1e-4),          max_step_contraction(1e-3),          min_step_contraction(0.9),          min_step_size(1e-9),          max_num_iterations(20),          sufficient_curvature_decrease(0.9),          max_step_expansion(10.0),          is_silent(false),          function(NULL) {}    // Degree of the polynomial used to approximate the objective    // function.    LineSearchInterpolationType interpolation_type;    // Armijo and Wolfe line search parameters.    // Solving the line search problem exactly is computationally    // prohibitive. Fortunately, line search based optimization    // algorithms can still guarantee convergence if instead of an    // exact solution, the line search algorithm returns a solution    // which decreases the value of the objective function    // sufficiently. More precisely, we are looking for a step_size    // s.t.    //    //  f(step_size) <= f(0) + sufficient_decrease * f'(0) * step_size    double sufficient_decrease;    // In each iteration of the Armijo / Wolfe line search,    //    // new_step_size >= max_step_contraction * step_size    //    // Note that by definition, for contraction:    //    //  0 < max_step_contraction < min_step_contraction < 1    //    double max_step_contraction;    // In each iteration of the Armijo / Wolfe line search,    //    // new_step_size <= min_step_contraction * step_size    // Note that by definition, for contraction:    //    //  0 < max_step_contraction < min_step_contraction < 1    //    double min_step_contraction;    // If during the line search, the step_size falls below this    // value, it is truncated to zero.    double min_step_size;    // Maximum number of trial step size iterations during each line search,    // if a step size satisfying the search conditions cannot be found within    // this number of trials, the line search will terminate.    int max_num_iterations;    // Wolfe-specific line search parameters.    // The strong Wolfe conditions consist of the Armijo sufficient    // decrease condition, and an additional requirement that the    // step-size be chosen s.t. the _magnitude_ ('strong' Wolfe    // conditions) of the gradient along the search direction    // decreases sufficiently. Precisely, this second condition    // is that we seek a step_size s.t.    //    //   |f'(step_size)| <= sufficient_curvature_decrease * |f'(0)|    //    // Where f() is the line search objective and f'() is the derivative    // of f w.r.t step_size (d f / d step_size).    double sufficient_curvature_decrease;    // During the bracketing phase of the Wolfe search, the step size is    // increased until either a point satisfying the Wolfe conditions is    // found, or an upper bound for a bracket containing a point satisfying    // the conditions is found.  Precisely, at each iteration of the    // expansion:    //    //   new_step_size <= max_step_expansion * step_size.    //    // By definition for expansion, max_step_expansion > 1.0.    double max_step_expansion;    bool is_silent;    // The one dimensional function that the line search algorithm    // minimizes.    LineSearchFunction* function;  };  // Result of the line search.  struct Summary {    Summary()        : success(false),          num_function_evaluations(0),          num_gradient_evaluations(0),          num_iterations(0),          cost_evaluation_time_in_seconds(-1.0),          gradient_evaluation_time_in_seconds(-1.0),          polynomial_minimization_time_in_seconds(-1.0),          total_time_in_seconds(-1.0) {}    bool success;    FunctionSample optimal_point;    int num_function_evaluations;    int num_gradient_evaluations;    int num_iterations;    // Cumulative time spent evaluating the value of the cost function across    // all iterations.    double cost_evaluation_time_in_seconds;    // Cumulative time spent evaluating the gradient of the cost function across    // all iterations.    double gradient_evaluation_time_in_seconds;    // Cumulative time spent minimizing the interpolating polynomial to compute    // the next candidate step size across all iterations.    double polynomial_minimization_time_in_seconds;    double total_time_in_seconds;    std::string error;  };  explicit LineSearch(const LineSearch::Options& options);  virtual ~LineSearch() {}  static LineSearch* Create(const LineSearchType line_search_type,                            const LineSearch::Options& options,                            std::string* error);  // Perform the line search.  //  // step_size_estimate must be a positive number.  //  // initial_cost and initial_gradient are the values and gradient of  // the function at zero.  // summary must not be null and will contain the result of the line  // search.  //  // Summary::success is true if a non-zero step size is found.  void Search(double step_size_estimate,              double initial_cost,              double initial_gradient,              Summary* summary) const;  double InterpolatingPolynomialMinimizingStepSize(      const LineSearchInterpolationType& interpolation_type,      const FunctionSample& lowerbound_sample,      const FunctionSample& previous_sample,      const FunctionSample& current_sample,      const double min_step_size,      const double max_step_size) const; protected:  const LineSearch::Options& options() const { return options_; } private:  virtual void DoSearch(double step_size_estimate,                        double initial_cost,                        double initial_gradient,                        Summary* summary) const = 0; private:  LineSearch::Options options_;};// An object used by the line search to access the function values// and gradient of the one dimensional function being optimized.//// In practice, this object provides access to the objective// function value and the directional derivative of the underlying// optimization problem along a specific search direction.class LineSearchFunction { public:  explicit LineSearchFunction(Evaluator* evaluator);  void Init(const Vector& position, const Vector& direction);  // Evaluate the line search objective  //  //   f(x) = p(position + x * direction)  //  // Where, p is the objective function of the general optimization  // problem.  //  // evaluate_gradient controls whether the gradient will be evaluated  // or not.  //  // On return output->*_is_valid indicate indicate whether the  // corresponding fields have numerically valid values or not.  void Evaluate(double x, bool evaluate_gradient, FunctionSample* output);  double DirectionInfinityNorm() const;  // Resets to now, the start point for the results from TimeStatistics().  void ResetTimeStatistics();  void TimeStatistics(double* cost_evaluation_time_in_seconds,                      double* gradient_evaluation_time_in_seconds) const;  const Vector& position() const { return position_; }  const Vector& direction() const { return direction_; } private:  Evaluator* evaluator_;  Vector position_;  Vector direction_;  // scaled_direction = x * direction_;  Vector scaled_direction_;  // We may not exclusively own the evaluator (e.g. in the Trust Region  // minimizer), hence we need to save the initial evaluation durations for the  // value & gradient to accurately determine the duration of the evaluations  // we invoked.  These are reset by a call to ResetTimeStatistics().  double initial_evaluator_residual_time_in_seconds;  double initial_evaluator_jacobian_time_in_seconds;};// Backtracking and interpolation based Armijo line search. This// implementation is based on the Armijo line search that ships in the// minFunc package by Mark Schmidt.//// For more details: http://www.di.ens.fr/~mschmidt/Software/minFunc.htmlclass ArmijoLineSearch : public LineSearch { public:  explicit ArmijoLineSearch(const LineSearch::Options& options);  virtual ~ArmijoLineSearch() {} private:  virtual void DoSearch(double step_size_estimate,                        double initial_cost,                        double initial_gradient,                        Summary* summary) const;};// Bracketing / Zoom Strong Wolfe condition line search.  This implementation// is based on the pseudo-code algorithm presented in Nocedal & Wright [1]// (p60-61) with inspiration from the WolfeLineSearch which ships with the// minFunc package by Mark Schmidt [2].//// [1] Nocedal J., Wright S., Numerical Optimization, 2nd Ed., Springer, 1999.// [2] http://www.di.ens.fr/~mschmidt/Software/minFunc.html.class WolfeLineSearch : public LineSearch { public:  explicit WolfeLineSearch(const LineSearch::Options& options);  virtual ~WolfeLineSearch() {}  // Returns true iff either a valid point, or valid bracket are found.  bool BracketingPhase(const FunctionSample& initial_position,                       const double step_size_estimate,                       FunctionSample* bracket_low,                       FunctionSample* bracket_high,                       bool* perform_zoom_search,                       Summary* summary) const;  // Returns true iff final_line_sample satisfies strong Wolfe conditions.  bool ZoomPhase(const FunctionSample& initial_position,                 FunctionSample bracket_low,                 FunctionSample bracket_high,                 FunctionSample* solution,                 Summary* summary) const; private:  virtual void DoSearch(double step_size_estimate,                        double initial_cost,                        double initial_gradient,                        Summary* summary) const;};}  // namespace internal}  // namespace ceres#endif  // CERES_INTERNAL_LINE_SEARCH_H_
 |