| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852 | 
							- // Ceres Solver - A fast non-linear least squares minimizer
 
- // Copyright 2015 Google Inc. All rights reserved.
 
- // http://ceres-solver.org/
 
- //
 
- // Redistribution and use in source and binary forms, with or without
 
- // modification, are permitted provided that the following conditions are met:
 
- //
 
- // * Redistributions of source code must retain the above copyright notice,
 
- //   this list of conditions and the following disclaimer.
 
- // * Redistributions in binary form must reproduce the above copyright notice,
 
- //   this list of conditions and the following disclaimer in the documentation
 
- //   and/or other materials provided with the distribution.
 
- // * Neither the name of Google Inc. nor the names of its contributors may be
 
- //   used to endorse or promote products derived from this software without
 
- //   specific prior written permission.
 
- //
 
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 
- // POSSIBILITY OF SUCH DAMAGE.
 
- //
 
- // Author: sameeragarwal@google.com (Sameer Agarwal)
 
- #include "ceres/line_search.h"
 
- #include <iomanip>
 
- #include <iostream>  // NOLINT
 
- #include "ceres/evaluator.h"
 
- #include "ceres/fpclassify.h"
 
- #include "ceres/function_sample.h"
 
- #include "ceres/internal/eigen.h"
 
- #include "ceres/map_util.h"
 
- #include "ceres/polynomial.h"
 
- #include "ceres/stringprintf.h"
 
- #include "ceres/wall_time.h"
 
- #include "glog/logging.h"
 
- namespace ceres {
 
- namespace internal {
 
- using std::map;
 
- using std::ostream;
 
- using std::string;
 
- using std::vector;
 
- namespace {
 
- // Precision used for floating point values in error message output.
 
- const int kErrorMessageNumericPrecision = 8;
 
- }  // namespace
 
- ostream& operator<<(ostream &os, const FunctionSample& sample);
 
- // Convenience stream operator for pushing FunctionSamples into log messages.
 
- ostream& operator<<(ostream &os, const FunctionSample& sample) {
 
-   os << sample.ToDebugString();
 
-   return os;
 
- }
 
- LineSearch::LineSearch(const LineSearch::Options& options)
 
-     : options_(options) {}
 
- LineSearch* LineSearch::Create(const LineSearchType line_search_type,
 
-                                const LineSearch::Options& options,
 
-                                string* error) {
 
-   LineSearch* line_search = NULL;
 
-   switch (line_search_type) {
 
-   case ceres::ARMIJO:
 
-     line_search = new ArmijoLineSearch(options);
 
-     break;
 
-   case ceres::WOLFE:
 
-     line_search = new WolfeLineSearch(options);
 
-     break;
 
-   default:
 
-     *error = string("Invalid line search algorithm type: ") +
 
-         LineSearchTypeToString(line_search_type) +
 
-         string(", unable to create line search.");
 
-     return NULL;
 
-   }
 
-   return line_search;
 
- }
 
- LineSearchFunction::LineSearchFunction(Evaluator* evaluator)
 
-     : evaluator_(evaluator),
 
-       position_(evaluator->NumParameters()),
 
-       direction_(evaluator->NumEffectiveParameters()),
 
-       scaled_direction_(evaluator->NumEffectiveParameters()),
 
-       initial_evaluator_residual_time_in_seconds(0.0),
 
-       initial_evaluator_jacobian_time_in_seconds(0.0) {}
 
- void LineSearchFunction::Init(const Vector& position,
 
-                               const Vector& direction) {
 
-   position_ = position;
 
-   direction_ = direction;
 
- }
 
- void LineSearchFunction::Evaluate(const double x,
 
-                                   const bool evaluate_gradient,
 
-                                   FunctionSample* output) {
 
-   output->x = x;
 
-   output->vector_x_is_valid = false;
 
-   output->value_is_valid = false;
 
-   output->gradient_is_valid = false;
 
-   output->vector_gradient_is_valid = false;
 
-   scaled_direction_ = output->x * direction_;
 
-   output->vector_x.resize(position_.rows(), 1);
 
-   if (!evaluator_->Plus(position_.data(),
 
-                         scaled_direction_.data(),
 
-                         output->vector_x.data())) {
 
-     return;
 
-   }
 
-   output->vector_x_is_valid = true;
 
-   double* gradient = NULL;
 
-   if (evaluate_gradient) {
 
-     output->vector_gradient.resize(direction_.rows(), 1);
 
-     gradient = output->vector_gradient.data();
 
-   }
 
-   const bool eval_status = evaluator_->Evaluate(
 
-       output->vector_x.data(), &(output->value), NULL, gradient, NULL);
 
-   if (!eval_status || !IsFinite(output->value)) {
 
-     return;
 
-   }
 
-   output->value_is_valid = true;
 
-   if (!evaluate_gradient) {
 
-     return;
 
-   }
 
-   output->gradient = direction_.dot(output->vector_gradient);
 
-   if (!IsFinite(output->gradient)) {
 
-     return;
 
-   }
 
-   output->gradient_is_valid = true;
 
-   output->vector_gradient_is_valid = true;
 
- }
 
- double LineSearchFunction::DirectionInfinityNorm() const {
 
-   return direction_.lpNorm<Eigen::Infinity>();
 
- }
 
- void LineSearchFunction::ResetTimeStatistics() {
 
-   const map<string, double> evaluator_time_statistics =
 
-       evaluator_->TimeStatistics();
 
-   initial_evaluator_residual_time_in_seconds =
 
-       FindWithDefault(evaluator_time_statistics, "Evaluator::Residual", 0.0);
 
-   initial_evaluator_jacobian_time_in_seconds =
 
-       FindWithDefault(evaluator_time_statistics, "Evaluator::Jacobian", 0.0);
 
- }
 
- void LineSearchFunction::TimeStatistics(
 
-     double* cost_evaluation_time_in_seconds,
 
-     double* gradient_evaluation_time_in_seconds) const {
 
-   const map<string, double> evaluator_time_statistics =
 
-       evaluator_->TimeStatistics();
 
-   *cost_evaluation_time_in_seconds =
 
-       FindWithDefault(evaluator_time_statistics, "Evaluator::Residual", 0.0) -
 
-       initial_evaluator_residual_time_in_seconds;
 
-   // Strictly speaking this will slightly underestimate the time spent
 
-   // evaluating the gradient of the line search univariate cost function as it
 
-   // does not count the time spent performing the dot product with the direction
 
-   // vector.  However, this will typically be small by comparison, and also
 
-   // allows direct subtraction of the timing information from the totals for
 
-   // the evaluator returned in the solver summary.
 
-   *gradient_evaluation_time_in_seconds =
 
-       FindWithDefault(evaluator_time_statistics, "Evaluator::Jacobian", 0.0) -
 
-       initial_evaluator_jacobian_time_in_seconds;
 
- }
 
- void LineSearch::Search(double step_size_estimate,
 
-                         double initial_cost,
 
-                         double initial_gradient,
 
-                         Summary* summary) const {
 
-   const double start_time = WallTimeInSeconds();
 
-   *CHECK_NOTNULL(summary) = LineSearch::Summary();
 
-   summary->cost_evaluation_time_in_seconds = 0.0;
 
-   summary->gradient_evaluation_time_in_seconds = 0.0;
 
-   summary->polynomial_minimization_time_in_seconds = 0.0;
 
-   options().function->ResetTimeStatistics();
 
-   this->DoSearch(step_size_estimate, initial_cost, initial_gradient, summary);
 
-   options().function->
 
-       TimeStatistics(&summary->cost_evaluation_time_in_seconds,
 
-                      &summary->gradient_evaluation_time_in_seconds);
 
-   summary->total_time_in_seconds = WallTimeInSeconds() - start_time;
 
- }
 
- // Returns step_size \in [min_step_size, max_step_size] which minimizes the
 
- // polynomial of degree defined by interpolation_type which interpolates all
 
- // of the provided samples with valid values.
 
- double LineSearch::InterpolatingPolynomialMinimizingStepSize(
 
-     const LineSearchInterpolationType& interpolation_type,
 
-     const FunctionSample& lowerbound,
 
-     const FunctionSample& previous,
 
-     const FunctionSample& current,
 
-     const double min_step_size,
 
-     const double max_step_size) const {
 
-   if (!current.value_is_valid ||
 
-       (interpolation_type == BISECTION &&
 
-        max_step_size <= current.x)) {
 
-     // Either: sample is invalid; or we are using BISECTION and contracting
 
-     // the step size.
 
-     return std::min(std::max(current.x * 0.5, min_step_size), max_step_size);
 
-   } else if (interpolation_type == BISECTION) {
 
-     CHECK_GT(max_step_size, current.x);
 
-     // We are expanding the search (during a Wolfe bracketing phase) using
 
-     // BISECTION interpolation.  Using BISECTION when trying to expand is
 
-     // strictly speaking an oxymoron, but we define this to mean always taking
 
-     // the maximum step size so that the Armijo & Wolfe implementations are
 
-     // agnostic to the interpolation type.
 
-     return max_step_size;
 
-   }
 
-   // Only check if lower-bound is valid here, where it is required
 
-   // to avoid replicating current.value_is_valid == false
 
-   // behaviour in WolfeLineSearch.
 
-   CHECK(lowerbound.value_is_valid)
 
-       << std::scientific << std::setprecision(kErrorMessageNumericPrecision)
 
-       << "Ceres bug: lower-bound sample for interpolation is invalid, "
 
-       << "please contact the developers!, interpolation_type: "
 
-       << LineSearchInterpolationTypeToString(interpolation_type)
 
-       << ", lowerbound: " << lowerbound << ", previous: " << previous
 
-       << ", current: " << current;
 
-   // Select step size by interpolating the function and gradient values
 
-   // and minimizing the corresponding polynomial.
 
-   vector<FunctionSample> samples;
 
-   samples.push_back(lowerbound);
 
-   if (interpolation_type == QUADRATIC) {
 
-     // Two point interpolation using function values and the
 
-     // gradient at the lower bound.
 
-     samples.push_back(FunctionSample(current.x, current.value));
 
-     if (previous.value_is_valid) {
 
-       // Three point interpolation, using function values and the
 
-       // gradient at the lower bound.
 
-       samples.push_back(FunctionSample(previous.x, previous.value));
 
-     }
 
-   } else if (interpolation_type == CUBIC) {
 
-     // Two point interpolation using the function values and the gradients.
 
-     samples.push_back(current);
 
-     if (previous.value_is_valid) {
 
-       // Three point interpolation using the function values and
 
-       // the gradients.
 
-       samples.push_back(previous);
 
-     }
 
-   } else {
 
-     LOG(FATAL) << "Ceres bug: No handler for interpolation_type: "
 
-                << LineSearchInterpolationTypeToString(interpolation_type)
 
-                << ", please contact the developers!";
 
-   }
 
-   double step_size = 0.0, unused_min_value = 0.0;
 
-   MinimizeInterpolatingPolynomial(samples, min_step_size, max_step_size,
 
-                                   &step_size, &unused_min_value);
 
-   return step_size;
 
- }
 
- ArmijoLineSearch::ArmijoLineSearch(const LineSearch::Options& options)
 
-     : LineSearch(options) {}
 
- void ArmijoLineSearch::DoSearch(const double step_size_estimate,
 
-                                 const double initial_cost,
 
-                                 const double initial_gradient,
 
-                                 Summary* summary) const {
 
-   CHECK_GE(step_size_estimate, 0.0);
 
-   CHECK_GT(options().sufficient_decrease, 0.0);
 
-   CHECK_LT(options().sufficient_decrease, 1.0);
 
-   CHECK_GT(options().max_num_iterations, 0);
 
-   LineSearchFunction* function = options().function;
 
-   // Note initial_cost & initial_gradient are evaluated at step_size = 0,
 
-   // not step_size_estimate, which is our starting guess.
 
-   FunctionSample initial_position(0.0, initial_cost, initial_gradient);
 
-   initial_position.vector_x = function->position();
 
-   initial_position.vector_x_is_valid = true;
 
-   const double descent_direction_max_norm = function->DirectionInfinityNorm();
 
-   FunctionSample previous;
 
-   FunctionSample current;
 
-   // As the Armijo line search algorithm always uses the initial point, for
 
-   // which both the function value and derivative are known, when fitting a
 
-   // minimizing polynomial, we can fit up to a quadratic without requiring the
 
-   // gradient at the current query point.
 
-   const bool kEvaluateGradient = options().interpolation_type == CUBIC;
 
-   ++summary->num_function_evaluations;
 
-   if (kEvaluateGradient) {
 
-     ++summary->num_gradient_evaluations;
 
-   }
 
-   function->Evaluate(step_size_estimate, kEvaluateGradient, ¤t);
 
-   while (!current.value_is_valid ||
 
-          current.value > (initial_cost
 
-                           + options().sufficient_decrease
 
-                           * initial_gradient
 
-                           * current.x)) {
 
-     // If current.value_is_valid is false, we treat it as if the cost at that
 
-     // point is not large enough to satisfy the sufficient decrease condition.
 
-     ++summary->num_iterations;
 
-     if (summary->num_iterations >= options().max_num_iterations) {
 
-       summary->error =
 
-           StringPrintf("Line search failed: Armijo failed to find a point "
 
-                        "satisfying the sufficient decrease condition within "
 
-                        "specified max_num_iterations: %d.",
 
-                        options().max_num_iterations);
 
-       LOG_IF(WARNING, !options().is_silent) << summary->error;
 
-       return;
 
-     }
 
-     const double polynomial_minimization_start_time = WallTimeInSeconds();
 
-     const double step_size =
 
-         this->InterpolatingPolynomialMinimizingStepSize(
 
-             options().interpolation_type,
 
-             initial_position,
 
-             previous,
 
-             current,
 
-             (options().max_step_contraction * current.x),
 
-             (options().min_step_contraction * current.x));
 
-     summary->polynomial_minimization_time_in_seconds +=
 
-         (WallTimeInSeconds() - polynomial_minimization_start_time);
 
-     if (step_size * descent_direction_max_norm < options().min_step_size) {
 
-       summary->error =
 
-           StringPrintf("Line search failed: step_size too small: %.5e "
 
-                        "with descent_direction_max_norm: %.5e.", step_size,
 
-                        descent_direction_max_norm);
 
-       LOG_IF(WARNING, !options().is_silent) << summary->error;
 
-       return;
 
-     }
 
-     previous = current;
 
-     ++summary->num_function_evaluations;
 
-     if (kEvaluateGradient) {
 
-       ++summary->num_gradient_evaluations;
 
-     }
 
-     function->Evaluate(step_size, kEvaluateGradient, ¤t);
 
-   }
 
-   summary->optimal_point = current;
 
-   summary->success = true;
 
- }
 
- WolfeLineSearch::WolfeLineSearch(const LineSearch::Options& options)
 
-     : LineSearch(options) {}
 
- void WolfeLineSearch::DoSearch(const double step_size_estimate,
 
-                                const double initial_cost,
 
-                                const double initial_gradient,
 
-                                Summary* summary) const {
 
-   // All parameters should have been validated by the Solver, but as
 
-   // invalid values would produce crazy nonsense, hard check them here.
 
-   CHECK_GE(step_size_estimate, 0.0);
 
-   CHECK_GT(options().sufficient_decrease, 0.0);
 
-   CHECK_GT(options().sufficient_curvature_decrease,
 
-            options().sufficient_decrease);
 
-   CHECK_LT(options().sufficient_curvature_decrease, 1.0);
 
-   CHECK_GT(options().max_step_expansion, 1.0);
 
-   // Note initial_cost & initial_gradient are evaluated at step_size = 0,
 
-   // not step_size_estimate, which is our starting guess.
 
-   FunctionSample initial_position(0.0, initial_cost, initial_gradient);
 
-   initial_position.vector_x = options().function->position();
 
-   initial_position.vector_x_is_valid = true;
 
-   bool do_zoom_search = false;
 
-   // Important: The high/low in bracket_high & bracket_low refer to their
 
-   // _function_ values, not their step sizes i.e. it is _not_ required that
 
-   // bracket_low.x < bracket_high.x.
 
-   FunctionSample solution, bracket_low, bracket_high;
 
-   // Wolfe bracketing phase: Increases step_size until either it finds a point
 
-   // that satisfies the (strong) Wolfe conditions, or an interval that brackets
 
-   // step sizes which satisfy the conditions.  From Nocedal & Wright [1] p61 the
 
-   // interval: (step_size_{k-1}, step_size_{k}) contains step lengths satisfying
 
-   // the strong Wolfe conditions if one of the following conditions are met:
 
-   //
 
-   //   1. step_size_{k} violates the sufficient decrease (Armijo) condition.
 
-   //   2. f(step_size_{k}) >= f(step_size_{k-1}).
 
-   //   3. f'(step_size_{k}) >= 0.
 
-   //
 
-   // Caveat: If f(step_size_{k}) is invalid, then step_size is reduced, ignoring
 
-   // this special case, step_size monotonically increases during bracketing.
 
-   if (!this->BracketingPhase(initial_position,
 
-                              step_size_estimate,
 
-                              &bracket_low,
 
-                              &bracket_high,
 
-                              &do_zoom_search,
 
-                              summary)) {
 
-     // Failed to find either a valid point, a valid bracket satisfying the Wolfe
 
-     // conditions, or even a step size > minimum tolerance satisfying the Armijo
 
-     // condition.
 
-     return;
 
-   }
 
-   if (!do_zoom_search) {
 
-     // Either: Bracketing phase already found a point satisfying the strong
 
-     // Wolfe conditions, thus no Zoom required.
 
-     //
 
-     // Or: Bracketing failed to find a valid bracket or a point satisfying the
 
-     // strong Wolfe conditions within max_num_iterations, or whilst searching
 
-     // shrank the bracket width until it was below our minimum tolerance.
 
-     // As these are 'artificial' constraints, and we would otherwise fail to
 
-     // produce a valid point when ArmijoLineSearch would succeed, we return the
 
-     // point with the lowest cost found thus far which satsifies the Armijo
 
-     // condition (but not the Wolfe conditions).
 
-     summary->optimal_point = bracket_low;
 
-     summary->success = true;
 
-     return;
 
-   }
 
-   VLOG(3) << std::scientific << std::setprecision(kErrorMessageNumericPrecision)
 
-           << "Starting line search zoom phase with bracket_low: "
 
-           << bracket_low << ", bracket_high: " << bracket_high
 
-           << ", bracket width: " << fabs(bracket_low.x - bracket_high.x)
 
-           << ", bracket abs delta cost: "
 
-           << fabs(bracket_low.value - bracket_high.value);
 
-   // Wolfe Zoom phase: Called when the Bracketing phase finds an interval of
 
-   // non-zero, finite width that should bracket step sizes which satisfy the
 
-   // (strong) Wolfe conditions (before finding a step size that satisfies the
 
-   // conditions).  Zoom successively decreases the size of the interval until a
 
-   // step size which satisfies the Wolfe conditions is found.  The interval is
 
-   // defined by bracket_low & bracket_high, which satisfy:
 
-   //
 
-   //   1. The interval bounded by step sizes: bracket_low.x & bracket_high.x
 
-   //      contains step sizes that satsify the strong Wolfe conditions.
 
-   //   2. bracket_low.x is of all the step sizes evaluated *which satisifed the
 
-   //      Armijo sufficient decrease condition*, the one which generated the
 
-   //      smallest function value, i.e. bracket_low.value <
 
-   //      f(all other steps satisfying Armijo).
 
-   //        - Note that this does _not_ (necessarily) mean that initially
 
-   //          bracket_low.value < bracket_high.value (although this is typical)
 
-   //          e.g. when bracket_low = initial_position, and bracket_high is the
 
-   //          first sample, and which does not satisfy the Armijo condition,
 
-   //          but still has bracket_high.value < initial_position.value.
 
-   //   3. bracket_high is chosen after bracket_low, s.t.
 
-   //      bracket_low.gradient * (bracket_high.x - bracket_low.x) < 0.
 
-   if (!this->ZoomPhase(initial_position,
 
-                        bracket_low,
 
-                        bracket_high,
 
-                        &solution,
 
-                        summary) && !solution.value_is_valid) {
 
-     // Failed to find a valid point (given the specified decrease parameters)
 
-     // within the specified bracket.
 
-     return;
 
-   }
 
-   // Ensure that if we ran out of iterations whilst zooming the bracket, or
 
-   // shrank the bracket width to < tolerance and failed to find a point which
 
-   // satisfies the strong Wolfe curvature condition, that we return the point
 
-   // amongst those found thus far, which minimizes f() and satisfies the Armijo
 
-   // condition.
 
-   if (!solution.value_is_valid || solution.value > bracket_low.value) {
 
-     summary->optimal_point = bracket_low;
 
-   } else {
 
-     summary->optimal_point = solution;
 
-   }
 
-   summary->success = true;
 
- }
 
- // Returns true if either:
 
- //
 
- // A termination condition satisfying the (strong) Wolfe bracketing conditions
 
- // is found:
 
- //
 
- // - A valid point, defined as a bracket of zero width [zoom not required].
 
- // - A valid bracket (of width > tolerance), [zoom required].
 
- //
 
- // Or, searching was stopped due to an 'artificial' constraint, i.e. not
 
- // a condition imposed / required by the underlying algorithm, but instead an
 
- // engineering / implementation consideration. But a step which exceeds the
 
- // minimum step size, and satsifies the Armijo condition was still found,
 
- // and should thus be used [zoom not required].
 
- //
 
- // Returns false if no step size > minimum step size was found which
 
- // satisfies at least the Armijo condition.
 
- bool WolfeLineSearch::BracketingPhase(
 
-     const FunctionSample& initial_position,
 
-     const double step_size_estimate,
 
-     FunctionSample* bracket_low,
 
-     FunctionSample* bracket_high,
 
-     bool* do_zoom_search,
 
-     Summary* summary) const {
 
-   LineSearchFunction* function = options().function;
 
-   FunctionSample previous = initial_position;
 
-   FunctionSample current;
 
-   const double descent_direction_max_norm =
 
-       function->DirectionInfinityNorm();
 
-   *do_zoom_search = false;
 
-   *bracket_low = initial_position;
 
-   // As we require the gradient to evaluate the Wolfe condition, we always
 
-   // calculate it together with the value, irrespective of the interpolation
 
-   // type.  As opposed to only calculating the gradient after the Armijo
 
-   // condition is satisifed, as the computational saving from this approach
 
-   // would be slight (perhaps even negative due to the extra call).  Also,
 
-   // always calculating the value & gradient together protects against us
 
-   // reporting invalid solutions if the cost function returns slightly different
 
-   // function values when evaluated with / without gradients (due to numerical
 
-   // issues).
 
-   ++summary->num_function_evaluations;
 
-   ++summary->num_gradient_evaluations;
 
-   const bool kEvaluateGradient = true;
 
-   function->Evaluate(step_size_estimate, kEvaluateGradient, ¤t);
 
-   while (true) {
 
-     ++summary->num_iterations;
 
-     if (current.value_is_valid &&
 
-         (current.value > (initial_position.value
 
-                           + options().sufficient_decrease
 
-                           * initial_position.gradient
 
-                           * current.x) ||
 
-          (previous.value_is_valid && current.value > previous.value))) {
 
-       // Bracket found: current step size violates Armijo sufficient decrease
 
-       // condition, or has stepped past an inflection point of f() relative to
 
-       // previous step size.
 
-       *do_zoom_search = true;
 
-       *bracket_low = previous;
 
-       *bracket_high = current;
 
-       VLOG(3) << std::scientific
 
-               << std::setprecision(kErrorMessageNumericPrecision)
 
-               << "Bracket found: current step (" << current.x
 
-               << ") violates Armijo sufficient condition, or has passed an "
 
-               << "inflection point of f() based on value.";
 
-       break;
 
-     }
 
-     if (current.value_is_valid &&
 
-         fabs(current.gradient) <=
 
-         -options().sufficient_curvature_decrease * initial_position.gradient) {
 
-       // Current step size satisfies the strong Wolfe conditions, and is thus a
 
-       // valid termination point, therefore a Zoom not required.
 
-       *bracket_low = current;
 
-       *bracket_high = current;
 
-       VLOG(3) << std::scientific
 
-               << std::setprecision(kErrorMessageNumericPrecision)
 
-               << "Bracketing phase found step size: " << current.x
 
-               << ", satisfying strong Wolfe conditions, initial_position: "
 
-               << initial_position << ", current: " << current;
 
-       break;
 
-     } else if (current.value_is_valid && current.gradient >= 0) {
 
-       // Bracket found: current step size has stepped past an inflection point
 
-       // of f(), but Armijo sufficient decrease is still satisfied and
 
-       // f(current) is our best minimum thus far.  Remember step size
 
-       // monotonically increases, thus previous_step_size < current_step_size
 
-       // even though f(previous) > f(current).
 
-       *do_zoom_search = true;
 
-       // Note inverse ordering from first bracket case.
 
-       *bracket_low = current;
 
-       *bracket_high = previous;
 
-       VLOG(3) << "Bracket found: current step (" << current.x
 
-               << ") satisfies Armijo, but has gradient >= 0, thus have passed "
 
-               << "an inflection point of f().";
 
-       break;
 
-     } else if (current.value_is_valid &&
 
-                fabs(current.x - previous.x) * descent_direction_max_norm
 
-                < options().min_step_size) {
 
-       // We have shrunk the search bracket to a width less than our tolerance,
 
-       // and still not found either a point satisfying the strong Wolfe
 
-       // conditions, or a valid bracket containing such a point. Stop searching
 
-       // and set bracket_low to the size size amongst all those tested which
 
-       // minimizes f() and satisfies the Armijo condition.
 
-       LOG_IF(WARNING, !options().is_silent)
 
-           << "Line search failed: Wolfe bracketing phase shrank "
 
-           << "bracket width: " << fabs(current.x - previous.x)
 
-           <<  ", to < tolerance: " << options().min_step_size
 
-           << ", with descent_direction_max_norm: "
 
-           << descent_direction_max_norm << ", and failed to find "
 
-           << "a point satisfying the strong Wolfe conditions or a "
 
-           << "bracketing containing such a point. Accepting "
 
-           << "point found satisfying Armijo condition only, to "
 
-           << "allow continuation.";
 
-       *bracket_low = current;
 
-       break;
 
-     } else if (summary->num_iterations >= options().max_num_iterations) {
 
-       // Check num iterations bound here so that we always evaluate the
 
-       // max_num_iterations-th iteration against all conditions, and
 
-       // then perform no additional (unused) evaluations.
 
-       summary->error =
 
-           StringPrintf("Line search failed: Wolfe bracketing phase failed to "
 
-                        "find a point satisfying strong Wolfe conditions, or a "
 
-                        "bracket containing such a point within specified "
 
-                        "max_num_iterations: %d", options().max_num_iterations);
 
-       LOG_IF(WARNING, !options().is_silent) << summary->error;
 
-       // Ensure that bracket_low is always set to the step size amongst all
 
-       // those tested which minimizes f() and satisfies the Armijo condition
 
-       // when we terminate due to the 'artificial' max_num_iterations condition.
 
-       *bracket_low =
 
-           current.value_is_valid && current.value < bracket_low->value
 
-           ? current : *bracket_low;
 
-       break;
 
-     }
 
-     // Either: f(current) is invalid; or, f(current) is valid, but does not
 
-     // satisfy the strong Wolfe conditions itself, or the conditions for
 
-     // being a boundary of a bracket.
 
-     // If f(current) is valid, (but meets no criteria) expand the search by
 
-     // increasing the step size.
 
-     const double max_step_size =
 
-         current.value_is_valid
 
-         ? (current.x * options().max_step_expansion) : current.x;
 
-     // We are performing 2-point interpolation only here, but the API of
 
-     // InterpolatingPolynomialMinimizingStepSize() allows for up to
 
-     // 3-point interpolation, so pad call with a sample with an invalid
 
-     // value that will therefore be ignored.
 
-     const FunctionSample unused_previous;
 
-     DCHECK(!unused_previous.value_is_valid);
 
-     // Contracts step size if f(current) is not valid.
 
-     const double polynomial_minimization_start_time = WallTimeInSeconds();
 
-     const double step_size =
 
-         this->InterpolatingPolynomialMinimizingStepSize(
 
-             options().interpolation_type,
 
-             previous,
 
-             unused_previous,
 
-             current,
 
-             previous.x,
 
-             max_step_size);
 
-     summary->polynomial_minimization_time_in_seconds +=
 
-         (WallTimeInSeconds() - polynomial_minimization_start_time);
 
-     if (step_size * descent_direction_max_norm < options().min_step_size) {
 
-       summary->error =
 
-           StringPrintf("Line search failed: step_size too small: %.5e "
 
-                        "with descent_direction_max_norm: %.5e", step_size,
 
-                        descent_direction_max_norm);
 
-       LOG_IF(WARNING, !options().is_silent) << summary->error;
 
-       return false;
 
-     }
 
-     previous = current.value_is_valid ? current : previous;
 
-     ++summary->num_function_evaluations;
 
-     ++summary->num_gradient_evaluations;
 
-     function->Evaluate(step_size, kEvaluateGradient, ¤t);
 
-   }
 
-   // Ensure that even if a valid bracket was found, we will only mark a zoom
 
-   // as required if the bracket's width is greater than our minimum tolerance.
 
-   if (*do_zoom_search &&
 
-       fabs(bracket_high->x - bracket_low->x) * descent_direction_max_norm
 
-       < options().min_step_size) {
 
-     *do_zoom_search = false;
 
-   }
 
-   return true;
 
- }
 
- // Returns true iff solution satisfies the strong Wolfe conditions. Otherwise,
 
- // on return false, if we stopped searching due to the 'artificial' condition of
 
- // reaching max_num_iterations, solution is the step size amongst all those
 
- // tested, which satisfied the Armijo decrease condition and minimized f().
 
- bool WolfeLineSearch::ZoomPhase(const FunctionSample& initial_position,
 
-                                 FunctionSample bracket_low,
 
-                                 FunctionSample bracket_high,
 
-                                 FunctionSample* solution,
 
-                                 Summary* summary) const {
 
-   LineSearchFunction* function = options().function;
 
-   CHECK(bracket_low.value_is_valid && bracket_low.gradient_is_valid)
 
-       << std::scientific << std::setprecision(kErrorMessageNumericPrecision)
 
-       << "Ceres bug: f_low input to Wolfe Zoom invalid, please contact "
 
-       << "the developers!, initial_position: " << initial_position
 
-       << ", bracket_low: " << bracket_low
 
-       << ", bracket_high: "<< bracket_high;
 
-   // We do not require bracket_high.gradient_is_valid as the gradient condition
 
-   // for a valid bracket is only dependent upon bracket_low.gradient, and
 
-   // in order to minimize jacobian evaluations, bracket_high.gradient may
 
-   // not have been calculated (if bracket_high.value does not satisfy the
 
-   // Armijo sufficient decrease condition and interpolation method does not
 
-   // require it).
 
-   //
 
-   // We also do not require that: bracket_low.value < bracket_high.value,
 
-   // although this is typical. This is to deal with the case when
 
-   // bracket_low = initial_position, bracket_high is the first sample,
 
-   // and bracket_high does not satisfy the Armijo condition, but still has
 
-   // bracket_high.value < initial_position.value.
 
-   CHECK(bracket_high.value_is_valid)
 
-       << std::scientific << std::setprecision(kErrorMessageNumericPrecision)
 
-       << "Ceres bug: f_high input to Wolfe Zoom invalid, please "
 
-       << "contact the developers!, initial_position: " << initial_position
 
-       << ", bracket_low: " << bracket_low
 
-       << ", bracket_high: "<< bracket_high;
 
-   if (bracket_low.gradient * (bracket_high.x - bracket_low.x) >= 0) {
 
-     // The third condition for a valid initial bracket:
 
-     //
 
-     //   3. bracket_high is chosen after bracket_low, s.t.
 
-     //      bracket_low.gradient * (bracket_high.x - bracket_low.x) < 0.
 
-     //
 
-     // is not satisfied.  As this can happen when the users' cost function
 
-     // returns inconsistent gradient values relative to the function values,
 
-     // we do not CHECK_LT(), but we do stop processing and return an invalid
 
-     // value.
 
-     summary->error =
 
-         StringPrintf("Line search failed: Wolfe zoom phase passed a bracket "
 
-                      "which does not satisfy: bracket_low.gradient * "
 
-                      "(bracket_high.x - bracket_low.x) < 0 [%.8e !< 0] "
 
-                      "with initial_position: %s, bracket_low: %s, bracket_high:"
 
-                      " %s, the most likely cause of which is the cost function "
 
-                      "returning inconsistent gradient & function values.",
 
-                      bracket_low.gradient * (bracket_high.x - bracket_low.x),
 
-                      initial_position.ToDebugString().c_str(),
 
-                      bracket_low.ToDebugString().c_str(),
 
-                      bracket_high.ToDebugString().c_str());
 
-     LOG_IF(WARNING, !options().is_silent) << summary->error;
 
-     solution->value_is_valid = false;
 
-     return false;
 
-   }
 
-   const int num_bracketing_iterations = summary->num_iterations;
 
-   const double descent_direction_max_norm = function->DirectionInfinityNorm();
 
-   while (true) {
 
-     // Set solution to bracket_low, as it is our best step size (smallest f())
 
-     // found thus far and satisfies the Armijo condition, even though it does
 
-     // not satisfy the Wolfe condition.
 
-     *solution = bracket_low;
 
-     if (summary->num_iterations >= options().max_num_iterations) {
 
-       summary->error =
 
-           StringPrintf("Line search failed: Wolfe zoom phase failed to "
 
-                        "find a point satisfying strong Wolfe conditions "
 
-                        "within specified max_num_iterations: %d, "
 
-                        "(num iterations taken for bracketing: %d).",
 
-                        options().max_num_iterations, num_bracketing_iterations);
 
-       LOG_IF(WARNING, !options().is_silent) << summary->error;
 
-       return false;
 
-     }
 
-     if (fabs(bracket_high.x - bracket_low.x) * descent_direction_max_norm
 
-         < options().min_step_size) {
 
-       // Bracket width has been reduced below tolerance, and no point satisfying
 
-       // the strong Wolfe conditions has been found.
 
-       summary->error =
 
-           StringPrintf("Line search failed: Wolfe zoom bracket width: %.5e "
 
-                        "too small with descent_direction_max_norm: %.5e.",
 
-                        fabs(bracket_high.x - bracket_low.x),
 
-                        descent_direction_max_norm);
 
-       LOG_IF(WARNING, !options().is_silent) << summary->error;
 
-       return false;
 
-     }
 
-     ++summary->num_iterations;
 
-     // Polynomial interpolation requires inputs ordered according to step size,
 
-     // not f(step size).
 
-     const FunctionSample& lower_bound_step =
 
-         bracket_low.x < bracket_high.x ? bracket_low : bracket_high;
 
-     const FunctionSample& upper_bound_step =
 
-         bracket_low.x < bracket_high.x ? bracket_high : bracket_low;
 
-     // We are performing 2-point interpolation only here, but the API of
 
-     // InterpolatingPolynomialMinimizingStepSize() allows for up to
 
-     // 3-point interpolation, so pad call with a sample with an invalid
 
-     // value that will therefore be ignored.
 
-     const FunctionSample unused_previous;
 
-     DCHECK(!unused_previous.value_is_valid);
 
-     const double polynomial_minimization_start_time = WallTimeInSeconds();
 
-     const double step_size =
 
-         this->InterpolatingPolynomialMinimizingStepSize(
 
-             options().interpolation_type,
 
-             lower_bound_step,
 
-             unused_previous,
 
-             upper_bound_step,
 
-             lower_bound_step.x,
 
-             upper_bound_step.x);
 
-     summary->polynomial_minimization_time_in_seconds +=
 
-         (WallTimeInSeconds() - polynomial_minimization_start_time);
 
-     // No check on magnitude of step size being too small here as it is
 
-     // lower-bounded by the initial bracket start point, which was valid.
 
-     //
 
-     // As we require the gradient to evaluate the Wolfe condition, we always
 
-     // calculate it together with the value, irrespective of the interpolation
 
-     // type.  As opposed to only calculating the gradient after the Armijo
 
-     // condition is satisifed, as the computational saving from this approach
 
-     // would be slight (perhaps even negative due to the extra call).  Also,
 
-     // always calculating the value & gradient together protects against us
 
-     // reporting invalid solutions if the cost function returns slightly
 
-     // different function values when evaluated with / without gradients (due
 
-     // to numerical issues).
 
-     ++summary->num_function_evaluations;
 
-     ++summary->num_gradient_evaluations;
 
-     const bool kEvaluateGradient = true;
 
-     function->Evaluate(step_size, kEvaluateGradient, solution);
 
-     if (!solution->value_is_valid || !solution->gradient_is_valid) {
 
-       summary->error =
 
-           StringPrintf("Line search failed: Wolfe Zoom phase found "
 
-                        "step_size: %.5e, for which function is invalid, "
 
-                        "between low_step: %.5e and high_step: %.5e "
 
-                        "at which function is valid.",
 
-                        solution->x, bracket_low.x, bracket_high.x);
 
-       LOG_IF(WARNING, !options().is_silent) << summary->error;
 
-       return false;
 
-     }
 
-     VLOG(3) << "Zoom iteration: "
 
-             << summary->num_iterations - num_bracketing_iterations
 
-             << ", bracket_low: " << bracket_low
 
-             << ", bracket_high: " << bracket_high
 
-             << ", minimizing solution: " << *solution;
 
-     if ((solution->value > (initial_position.value
 
-                             + options().sufficient_decrease
 
-                             * initial_position.gradient
 
-                             * solution->x)) ||
 
-         (solution->value >= bracket_low.value)) {
 
-       // Armijo sufficient decrease not satisfied, or not better
 
-       // than current lowest sample, use as new upper bound.
 
-       bracket_high = *solution;
 
-       continue;
 
-     }
 
-     // Armijo sufficient decrease satisfied, check strong Wolfe condition.
 
-     if (fabs(solution->gradient) <=
 
-         -options().sufficient_curvature_decrease * initial_position.gradient) {
 
-       // Found a valid termination point satisfying strong Wolfe conditions.
 
-       VLOG(3) << std::scientific
 
-               << std::setprecision(kErrorMessageNumericPrecision)
 
-               << "Zoom phase found step size: " << solution->x
 
-               << ", satisfying strong Wolfe conditions.";
 
-       break;
 
-     } else if (solution->gradient * (bracket_high.x - bracket_low.x) >= 0) {
 
-       bracket_high = bracket_low;
 
-     }
 
-     bracket_low = *solution;
 
-   }
 
-   // Solution contains a valid point which satisfies the strong Wolfe
 
-   // conditions.
 
-   return true;
 
- }
 
- }  // namespace internal
 
- }  // namespace ceres
 
 
  |