| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2017 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: sameeragarwal@google.com (Sameer Agarwal)#ifndef CERES_INTERNAL_INVERT_PSD_MATRIX_H_#define CERES_INTERNAL_INVERT_PSD_MATRIX_H_#include "ceres/internal/eigen.h"#include "glog/logging.h"#include "Eigen/Dense"namespace ceres {namespace internal {// Helper routine to compute the inverse or pseudo-inverse of a// symmetric positive semi-definite matrix.//// assume_full_rank controls whether a Cholesky factorization or an// Singular Value Decomposition is used to compute the inverse and the// pseudo-inverse respectively.//// The template parameter kSize can either be Eigen::Dynamic or a// positive integer equal to the number of rows of m.template <int kSize>typename EigenTypes<kSize, kSize>::Matrix InvertPSDMatrix(    const bool assume_full_rank,    const typename EigenTypes<kSize, kSize>::Matrix& m) {  const int size = m.rows();  // If the matrix can be assumed to be full rank, then just use the  // Cholesky factorization to invert it.  if (assume_full_rank) {    return m.template selfadjointView<Eigen::Upper>().llt().solve(        Matrix::Identity(size, size));  }  Eigen::JacobiSVD<typename EigenTypes<kSize, kSize>::Matrix> svd(      m, Eigen::ComputeThinU | Eigen::ComputeThinV);  const double tolerance =      std::numeric_limits<double>::epsilon() * size * svd.singularValues()(0);  return svd.matrixV() *         (svd.singularValues().array() > tolerance)             .select(svd.singularValues().array().inverse(), 0)             .matrix()             .asDiagonal() *         svd.matrixU().adjoint();}}  // namespace internal}  // namespace ceres#endif // CERES_INTERNAL_INVERT_PSD_MATRIX_H_
 |