| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2015 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: sameeragarwal@google.com (Sameer Agarwal)//         keir@google.com (Keir Mierle)#ifndef CERES_INTERNAL_EVALUATOR_H_#define CERES_INTERNAL_EVALUATOR_H_#include <map>#include <string>#include <vector>#include "ceres/execution_summary.h"#include "ceres/internal/port.h"#include "ceres/types.h"namespace ceres {struct CRSMatrix;namespace internal {class Program;class SparseMatrix;// The Evaluator interface offers a way to interact with a least squares cost// function that is useful for an optimizer that wants to minimize the least// squares objective. This insulates the optimizer from issues like Jacobian// storage, parameterization, etc.class Evaluator { public:  virtual ~Evaluator();  struct Options {    Options()        : num_threads(1),          num_eliminate_blocks(-1),          linear_solver_type(DENSE_QR),          dynamic_sparsity(false) {}    int num_threads;    int num_eliminate_blocks;    LinearSolverType linear_solver_type;    bool dynamic_sparsity;  };  static Evaluator* Create(const Options& options,                           Program* program,                           std::string* error);  // This is used for computing the cost, residual and Jacobian for  // returning to the user. For actually solving the optimization  // problem, the optimization algorithm uses the ProgramEvaluator  // objects directly.  //  // The residual, gradients and jacobian pointers can be NULL, in  // which case they will not be evaluated. cost cannot be NULL.  //  // The parallelism of the evaluator is controlled by num_threads; it  // should be at least 1.  //  // Note: That this function does not take a parameter vector as  // input. The parameter blocks are evaluated on the values contained  // in the arrays pointed to by their user_state pointers.  //  // Also worth noting is that this function mutates program by  // calling Program::SetParameterOffsetsAndIndex() on it so that an  // evaluator object can be constructed.  static bool Evaluate(Program* program,                       int num_threads,                       double* cost,                       std::vector<double>* residuals,                       std::vector<double>* gradient,                       CRSMatrix* jacobian);  // Build and return a sparse matrix for storing and working with the Jacobian  // of the objective function. The jacobian has dimensions  // NumEffectiveParameters() by NumParameters(), and is typically extremely  // sparse. Since the sparsity pattern of the Jacobian remains constant over  // the lifetime of the optimization problem, this method is used to  // instantiate a SparseMatrix object with the appropriate sparsity structure  // (which can be an expensive operation) and then reused by the optimization  // algorithm and the various linear solvers.  //  // It is expected that the classes implementing this interface will be aware  // of their client's requirements for the kind of sparse matrix storage and  // layout that is needed for an efficient implementation. For example  // CompressedRowOptimizationProblem creates a compressed row representation of  // the jacobian for use with CHOLMOD, where as BlockOptimizationProblem  // creates a BlockSparseMatrix representation of the jacobian for use in the  // Schur complement based methods.  virtual SparseMatrix* CreateJacobian() const = 0;  // Options struct to control Evaluator::Evaluate;  struct EvaluateOptions {    EvaluateOptions()        : apply_loss_function(true) {    }    // If false, the loss function correction is not applied to the    // residual blocks.    bool apply_loss_function;  };  // Evaluate the cost function for the given state. Returns the cost,  // residuals, and jacobian in the corresponding arguments. Both residuals and  // jacobian are optional; to avoid computing them, pass NULL.  //  // If non-NULL, the Jacobian must have a suitable sparsity pattern; only the  // values array of the jacobian is modified.  //  // state is an array of size NumParameters(), cost is a pointer to a single  // double, and residuals is an array of doubles of size NumResiduals().  virtual bool Evaluate(const EvaluateOptions& evaluate_options,                        const double* state,                        double* cost,                        double* residuals,                        double* gradient,                        SparseMatrix* jacobian) = 0;  // Variant of Evaluator::Evaluate where the user wishes to use the  // default EvaluateOptions struct. This is mostly here as a  // convenience method.  bool Evaluate(const double* state,                double* cost,                double* residuals,                double* gradient,                SparseMatrix* jacobian) {    return Evaluate(EvaluateOptions(),                    state,                    cost,                    residuals,                    gradient,                    jacobian);  }  // Make a change delta (of size NumEffectiveParameters()) to state (of size  // NumParameters()) and store the result in state_plus_delta.  //  // In the case that there are no parameterizations used, this is equivalent to  //  //   state_plus_delta[i] = state[i] + delta[i] ;  //  // however, the mapping is more complicated in the case of parameterizations  // like quaternions. This is the same as the "Plus()" operation in  // local_parameterization.h, but operating over the entire state vector for a  // problem.  virtual bool Plus(const double* state,                    const double* delta,                    double* state_plus_delta) const = 0;  // The number of parameters in the optimization problem.  virtual int NumParameters() const = 0;  // This is the effective number of parameters that the optimizer may adjust.  // This applies when there are parameterizations on some of the parameters.  virtual int NumEffectiveParameters()  const = 0;  // The number of residuals in the optimization problem.  virtual int NumResiduals() const = 0;  // The following two methods return copies instead of references so  // that the base class implementation does not have to worry about  // life time issues. Further, these calls are not expected to be  // frequent or performance sensitive.  virtual std::map<std::string, int> CallStatistics() const {    return std::map<std::string, int>();  }  virtual std::map<std::string, double> TimeStatistics() const {    return std::map<std::string, double>();  }};}  // namespace internal}  // namespace ceres#endif  // CERES_INTERNAL_EVALUATOR_H_
 |