| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2017 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: sameeragarwal@google.com (Sameer Agarwal)#include "ceres/eigensparse.h"#ifdef CERES_USE_EIGEN_SPARSE#include <sstream>#include "Eigen/SparseCholesky"#include "Eigen/SparseCore"#include "ceres/compressed_row_sparse_matrix.h"#include "ceres/linear_solver.h"namespace ceres {namespace internal {template <typename Solver>class EigenSparseCholeskyTemplate : public EigenSparseCholesky { public:  EigenSparseCholeskyTemplate() : analyzed_(false) {}  virtual ~EigenSparseCholeskyTemplate() {}  virtual CompressedRowSparseMatrix::StorageType StorageType() const {    return CompressedRowSparseMatrix::LOWER_TRIANGULAR;  }  virtual LinearSolverTerminationType Factorize(      const Eigen::SparseMatrix<double>& lhs, std::string* message) {    if (!analyzed_) {      solver_.analyzePattern(lhs);      if (VLOG_IS_ON(2)) {        std::stringstream ss;        solver_.dumpMemory(ss);        VLOG(2) << "Symbolic Analysis\n" << ss.str();      }      if (solver_.info() != Eigen::Success) {        *message = "Eigen failure. Unable to find symbolic factorization.";        return LINEAR_SOLVER_FATAL_ERROR;      }      analyzed_ = true;    }    solver_.factorize(lhs);    if (solver_.info() != Eigen::Success) {      *message = "Eigen failure. Unable to find numeric factorization.";      return LINEAR_SOLVER_FAILURE;    }    return LINEAR_SOLVER_SUCCESS;  }  virtual LinearSolverTerminationType Solve(const double* rhs,                                            double* solution,                                            std::string* message) {    CHECK(analyzed_) << "Solve called without a call to Factorize first.";    VectorRef(solution, solver_.cols()) =        solver_.solve(ConstVectorRef(rhs, solver_.cols()));    if (solver_.info() != Eigen::Success) {      *message = "Eigen failure. Unable to do triangular solve.";      return LINEAR_SOLVER_FAILURE;    }    return LINEAR_SOLVER_SUCCESS;  }  virtual LinearSolverTerminationType Factorize(CompressedRowSparseMatrix* lhs,                                                std::string* message) {    CHECK_EQ(lhs->storage_type(), StorageType());    Eigen::MappedSparseMatrix<double, Eigen::ColMajor> eigen_lhs(        lhs->num_rows(),        lhs->num_rows(),        lhs->num_nonzeros(),        lhs->mutable_rows(),        lhs->mutable_cols(),        lhs->mutable_values());    return Factorize(eigen_lhs, message);  } private:  bool analyzed_;  Solver solver_;};EigenSparseCholesky* EigenSparseCholesky::Create(    const OrderingType ordering_type) {  // The preprocessor gymnastics here are dealing with the fact that  // before version 3.2.2, Eigen did not support a third template  // parameter to specify the ordering and it always defaults to AMD.#if EIGEN_VERSION_AT_LEAST(3, 2, 2)  typedef Eigen::SimplicialLDLT<Eigen::SparseMatrix<double>,                                Eigen::Upper,                                Eigen::AMDOrdering<int> >      WithAMDOrdering;  typedef Eigen::SimplicialLDLT<Eigen::SparseMatrix<double>,                                Eigen::Upper,                                Eigen::NaturalOrdering<int> >      WithNaturalOrdering;  if (ordering_type == AMD) {    return new EigenSparseCholeskyTemplate<WithAMDOrdering>();  } else {    return new EigenSparseCholeskyTemplate<WithNaturalOrdering>();  }#else  typedef Eigen::SimplicialLDLT<Eigen::SparseMatrix<double>, Eigen::Upper>      WithAMDOrdering;  return new EigenSparseCholeskyTemplate<WithAMDOrdering>();#endif}EigenSparseCholesky::~EigenSparseCholesky() {}}  // namespace internal}  // namespace ceres#endif  // CERES_USE_EIGEN_SPARSE
 |