| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.// http://code.google.com/p/ceres-solver///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: sameeragarwal@google.com (Sameer Agarwal)//// An example of solving a dynamically sized problem with various// solvers and loss functions.//// For a simpler bare bones example of doing bundle adjustment with// Ceres, please see simple_bundle_adjuster.cc.//// NOTE: This example will not compile without gflags and SuiteSparse.//// The problem being solved here is known as a Bundle Adjustment// problem in computer vision. Given a set of 3d points X_1, ..., X_n,// a set of cameras P_1, ..., P_m. If the point X_i is visible in// image j, then there is a 2D observation u_ij that is the expected// projection of X_i using P_j. The aim of this optimization is to// find values of X_i and P_j such that the reprojection error////    E(X,P) =  sum_ij  |u_ij - P_j X_i|^2//// is minimized.//// The problem used here comes from a collection of bundle adjustment// problems published at University of Washington.// http://grail.cs.washington.edu/projects/bal#include <algorithm>#include <cmath>#include <cstdio>#include <string>#include <vector>#include <gflags/gflags.h>#include <glog/logging.h>#include "bal_problem.h"#include "snavely_reprojection_error.h"#include "ceres/ceres.h"DEFINE_string(input, "", "Input File name");DEFINE_string(solver_type, "sparse_schur", "Options are: "              "sparse_schur, dense_schur, iterative_schur, cholesky, "              "dense_qr, and conjugate_gradients");DEFINE_string(preconditioner_type, "jacobi", "Options are: "              "identity, jacobi, schur_jacobi, cluster_jacobi, "              "cluster_tridiagonal");DEFINE_int32(num_iterations, 5, "Number of iterations");DEFINE_int32(num_threads, 1, "Number of threads");DEFINE_double(eta, 1e-2, "Default value for eta. Eta determines the "             "accuracy of each linear solve of the truncated newton step. "             "Changing this parameter can affect solve performance ");DEFINE_bool(use_schur_ordering, false, "Use automatic Schur ordering.");DEFINE_bool(use_quaternions, false, "If true, uses quaternions to represent "            "rotations. If false, angle axis is used");DEFINE_bool(use_local_parameterization, false, "For quaternions, use a local "            "parameterization.");DEFINE_bool(robustify, false, "Use a robust loss function");namespace ceres {namespace examples {void SetLinearSolver(Solver::Options* options) {  if (FLAGS_solver_type == "sparse_schur") {    options->linear_solver_type = ceres::SPARSE_SCHUR;  } else if (FLAGS_solver_type == "dense_schur") {    options->linear_solver_type = ceres::DENSE_SCHUR;  } else if (FLAGS_solver_type == "iterative_schur") {    options->linear_solver_type = ceres::ITERATIVE_SCHUR;  } else if (FLAGS_solver_type == "cholesky") {    options->linear_solver_type = ceres::SPARSE_NORMAL_CHOLESKY;  } else if (FLAGS_solver_type == "cgnr") {    options->linear_solver_type = ceres::CGNR;  } else if (FLAGS_solver_type == "dense_qr") {    // DENSE_QR is included here for completeness, but actually using    // this option is a bad idea due to the amount of memory needed    // to store even the smallest of the bundle adjustment jacobian    // arrays    options->linear_solver_type = ceres::DENSE_QR;  } else {    LOG(FATAL) << "Unknown ceres solver type: "               << FLAGS_solver_type;  }  if (options->linear_solver_type == ceres::CGNR) {    options->linear_solver_min_num_iterations = 5;    if (FLAGS_preconditioner_type == "identity") {      options->preconditioner_type = ceres::IDENTITY;    } else if (FLAGS_preconditioner_type == "jacobi") {      options->preconditioner_type = ceres::JACOBI;    } else {      LOG(FATAL) << "For CGNR, only identity and jacobian "                 << "preconditioners are supported. Got: "                 << FLAGS_preconditioner_type;    }  }  if (options->linear_solver_type == ceres::ITERATIVE_SCHUR) {    options->linear_solver_min_num_iterations = 5;    if (FLAGS_preconditioner_type == "identity") {      options->preconditioner_type = ceres::IDENTITY;    } else if (FLAGS_preconditioner_type == "jacobi") {      options->preconditioner_type = ceres::JACOBI;    } else if (FLAGS_preconditioner_type == "schur_jacobi") {      options->preconditioner_type = ceres::SCHUR_JACOBI;    } else if (FLAGS_preconditioner_type == "cluster_jacobi") {      options->preconditioner_type = ceres::CLUSTER_JACOBI;    } else if (FLAGS_preconditioner_type == "cluster_tridiagonal") {      options->preconditioner_type = ceres::CLUSTER_TRIDIAGONAL;    } else {      LOG(FATAL) << "Unknown ceres preconditioner type: "                 << FLAGS_preconditioner_type;    }  }  options->num_linear_solver_threads = FLAGS_num_threads;}void SetOrdering(BALProblem* bal_problem, Solver::Options* options) {  // Bundle adjustment problems have a sparsity structure that makes  // them amenable to more specialized and much more efficient  // solution strategies. The SPARSE_SCHUR, DENSE_SCHUR and  // ITERATIVE_SCHUR solvers make use of this specialized  // structure. Using them however requires that the ParameterBlocks  // are in a particular order (points before cameras) and  // Solver::Options::num_eliminate_blocks is set to the number of  // points.  //  // This can either be done by specifying Options::ordering_type =  // ceres::SCHUR, in which case Ceres will automatically determine  // the right ParameterBlock ordering, or by manually specifying a  // suitable ordering vector and defining  // Options::num_eliminate_blocks.  if (FLAGS_use_schur_ordering) {    options->ordering_type = ceres::SCHUR;    return;  }  options->ordering_type = ceres::USER;  const int num_points = bal_problem->num_points();  const int point_block_size = bal_problem->point_block_size();  double* points = bal_problem->mutable_points();  const int num_cameras = bal_problem->num_cameras();  const int camera_block_size = bal_problem->camera_block_size();  double* cameras = bal_problem->mutable_cameras();  // The points come before the cameras.  for (int i = 0; i < num_points; ++i) {    options->ordering.push_back(points + point_block_size * i);  }  for (int i = 0; i < num_cameras; ++i) {    // When using axis-angle, there is a single parameter block for    // the entire camera.    options->ordering.push_back(cameras + camera_block_size * i);    // If quaternions are used, there are two blocks, so add the    // second block to the ordering.    if (FLAGS_use_quaternions) {      options->ordering.push_back(cameras + camera_block_size * i + 4);    }  }  options->num_eliminate_blocks = num_points;}void SetMinimizerOptions(Solver::Options* options) {  options->max_num_iterations = FLAGS_num_iterations;  options->minimizer_progress_to_stdout = true;  options->num_threads = FLAGS_num_threads;  options->eta = FLAGS_eta;}void SetSolverOptionsFromFlags(BALProblem* bal_problem,                               Solver::Options* options) {  SetMinimizerOptions(options);  SetLinearSolver(options);  SetOrdering(bal_problem, options);}void BuildProblem(BALProblem* bal_problem, Problem* problem) {  const int point_block_size = bal_problem->point_block_size();  const int camera_block_size = bal_problem->camera_block_size();  double* points = bal_problem->mutable_points();  double* cameras = bal_problem->mutable_cameras();  // Observations is 2*num_observations long array observations =  // [u_1, u_2, ... , u_n], where each u_i is two dimensional, the x  // and y positions of the observation.  const double* observations = bal_problem->observations();  for (int i = 0; i < bal_problem->num_observations(); ++i) {    CostFunction* cost_function;    // Each Residual block takes a point and a camera as input and    // outputs a 2 dimensional residual.    if (FLAGS_use_quaternions) {      cost_function = new AutoDiffCostFunction<          SnavelyReprojectionErrorWitQuaternions, 2, 4, 6, 3>(              new SnavelyReprojectionErrorWitQuaternions(                  observations[2 * i + 0],                  observations[2 * i + 1]));    } else {      cost_function =          new AutoDiffCostFunction<SnavelyReprojectionError, 2, 9, 3>(              new SnavelyReprojectionError(observations[2 * i + 0],                                           observations[2 * i + 1]));    }    // If enabled use Huber's loss function.    LossFunction* loss_function = FLAGS_robustify ? new HuberLoss(1.0) : NULL;    // Each observation correponds to a pair of a camera and a point    // which are identified by camera_index()[i] and point_index()[i]    // respectively.    double* camera =        cameras + camera_block_size * bal_problem->camera_index()[i];    double* point = points + point_block_size * bal_problem->point_index()[i];    if (FLAGS_use_quaternions) {      // When using quaternions, we split the camera into two      // parameter blocks. One of size 4 for the quaternion and the      // other of size 6 containing the translation, focal length and      // the radial distortion parameters.      problem->AddResidualBlock(cost_function,                                loss_function,                                camera,                                camera + 4,                                point);    } else {      problem->AddResidualBlock(cost_function, loss_function, camera, point);    }  }  if (FLAGS_use_quaternions && FLAGS_use_local_parameterization) {    LocalParameterization* quaternion_parameterization =         new QuaternionParameterization;    for (int i = 0; i < bal_problem->num_cameras(); ++i) {      problem->SetParameterization(cameras + camera_block_size * i,                                   quaternion_parameterization);    }  }}void SolveProblem(const char* filename) {  BALProblem bal_problem(filename, FLAGS_use_quaternions);  Problem problem;  BuildProblem(&bal_problem, &problem);  Solver::Options options;  SetSolverOptionsFromFlags(&bal_problem, &options);  Solver::Summary summary;  Solve(options, &problem, &summary);  std::cout << summary.FullReport() << "\n";}}  // namespace examples}  // namespace ceresint main(int argc, char** argv) {  google::ParseCommandLineFlags(&argc, &argv, true);  google::InitGoogleLogging(argv[0]);  if (FLAGS_input.empty()) {    LOG(ERROR) << "Usage: bundle_adjustment_example --input=bal_problem";    return 1;  }  CHECK(FLAGS_use_quaternions || !FLAGS_use_local_parameterization)      << "--use_local_parameterization can only be used with "      << "--use_quaternions.";  ceres::examples::SolveProblem(FLAGS_input.c_str());  return 0;}
 |