| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2018 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: mierle@gmail.com (Keir Mierle)#include "ceres/evaluation_callback.h"#include <cmath>#include <limits>#include <vector>#include "ceres/problem.h"#include "ceres/problem_impl.h"#include "ceres/sized_cost_function.h"#include "ceres/autodiff_cost_function.h"#include "ceres/solver.h"#include "gtest/gtest.h"namespace ceres {namespace internal {// Use an inline hash function to avoid portability wrangling. Algorithm from// Daniel Bernstein, known as the "djb2" hash.template <typename T>uint64_t Djb2Hash(const T* data, const int size) {  uint64_t hash = 5381;  const uint8_t* data_as_bytes = reinterpret_cast<const uint8_t*>(data);  for (int i = 0; i < sizeof(*data) * size; ++i) {    hash = hash * 33 + data_as_bytes[i];  }  return hash;}const double kUninitialized = 0;// Generally multiple inheritance is a terrible idea, but in this (test)// case it makes for a relatively elegant test implementation.struct WigglyBowlCostFunctionAndEvaluationCallback : SizedCostFunction<2, 2>,                                                     EvaluationCallback {  explicit WigglyBowlCostFunctionAndEvaluationCallback(double* parameter)      : EvaluationCallback(),        user_parameter_block(parameter),        prepare_num_calls(0),        prepare_requested_jacobians(false),        prepare_new_evaluation_point(false),        prepare_parameter_hash(kUninitialized),        evaluate_num_calls(0),        evaluate_last_parameter_hash(kUninitialized) {}  virtual ~WigglyBowlCostFunctionAndEvaluationCallback() {}  // Evaluation callback interface. This checks that all the preconditions are  // met at the point that Ceres calls into it.  void PrepareForEvaluation(bool evaluate_jacobians,                            bool new_evaluation_point) final {    // At this point, the incoming parameters are implicitly pushed by Ceres    // into the user parameter blocks; in contrast to in Evaluate().    uint64_t incoming_parameter_hash = Djb2Hash(user_parameter_block, 2);    // Check: Prepare() & Evaluate() come in pairs, in that order. Before this    // call, the number of calls excluding this one should match.    EXPECT_EQ(prepare_num_calls, evaluate_num_calls);    // Check: new_evaluation_point indicates that the parameter has changed.    if (new_evaluation_point) {      // If it's a new evaluation point, then the parameter should have      // changed. Technically, it's not required that it must change but      // in practice it does, and that helps with testing.      EXPECT_NE(evaluate_last_parameter_hash, incoming_parameter_hash);      EXPECT_NE(prepare_parameter_hash, incoming_parameter_hash);    } else {      // If this is the same evaluation point as last time, ensure that      // the parameters match both from the previous evaluate, the      // previous prepare, and the current prepare.      EXPECT_EQ(evaluate_last_parameter_hash, prepare_parameter_hash);      EXPECT_EQ(evaluate_last_parameter_hash, incoming_parameter_hash);    }    // Save details for to check at the next call to Evaluate().    prepare_num_calls++;    prepare_requested_jacobians = evaluate_jacobians;    prepare_new_evaluation_point = new_evaluation_point;    prepare_parameter_hash = incoming_parameter_hash;  }  // Cost function interface. This checks that preconditions that were  // set as part of the PrepareForEvaluation() call are met in this one.  bool Evaluate(double const* const* parameters,                double* residuals,                double** jacobians) const final {    // Cost function implementation of the "Wiggly Bowl" function:    //    //   1/2 * [(y - a*sin(x))^2 + x^2],    //    // expressed as a Ceres cost function with two residuals:    //    //   r[0] = y - a*sin(x)    //   r[1] = x.    //    // This is harder to optimize than the Rosenbrock function because the    // minimizer has to navigate a sine-shaped valley while descending the 1D    // parabola formed along the y axis. Note that the "a" needs to be more    // than 5 to get a strong enough wiggle effect in the cost surface to    // trigger failed iterations in the optimizer.    const double a = 10.0;    double x = (*parameters)[0];    double y = (*parameters)[1];    residuals[0] = y - a * sin(x);    residuals[1] = x;    if (jacobians != NULL) {      (*jacobians)[2 * 0 + 0] = -a * cos(x);  // df1/dx      (*jacobians)[2 * 0 + 1] = 1.0;          // df1/dy      (*jacobians)[2 * 1 + 0] = 1.0;          // df2/dx      (*jacobians)[2 * 1 + 1] = 0.0;          // df2/dy    }    uint64_t incoming_parameter_hash = Djb2Hash(*parameters, 2);    // Check: PrepareForEvaluation() & Evaluate() come in pairs, in that order.    EXPECT_EQ(prepare_num_calls, evaluate_num_calls + 1);    // Check: if new_evaluation_point indicates that the parameter has    // changed, it has changed; otherwise it is the same.    if (prepare_new_evaluation_point) {      EXPECT_NE(evaluate_last_parameter_hash, incoming_parameter_hash);    } else {      EXPECT_NE(evaluate_last_parameter_hash, kUninitialized);      EXPECT_EQ(evaluate_last_parameter_hash, incoming_parameter_hash);    }    // Check: Parameter matches value in in parameter blocks during prepare.    EXPECT_EQ(prepare_parameter_hash, incoming_parameter_hash);    // Check: jacobians are requested if they were in PrepareForEvaluation().    EXPECT_EQ(prepare_requested_jacobians, jacobians != NULL);    evaluate_num_calls++;    evaluate_last_parameter_hash = incoming_parameter_hash;    return true;  }  // Pointer to the parameter block associated with this cost function.  // Contents should get set by Ceres before calls to PrepareForEvaluation()  // and Evaluate().  double* user_parameter_block;  // Track state: PrepareForEvaluation().  //  // These track details from the PrepareForEvaluation() call (hence the  // "prepare_" prefix), which are checked for consistency in Evaluate().  int prepare_num_calls;  bool prepare_requested_jacobians;  bool prepare_new_evaluation_point;  uint64_t prepare_parameter_hash;  // Track state: Evaluate().  //  // These track details from the Evaluate() call (hence the "evaluate_"  // prefix), which are then checked for consistency in the calls to  // PrepareForEvaluation(). Mutable is reasonable for this case.  mutable int evaluate_num_calls;  mutable uint64_t evaluate_last_parameter_hash;};TEST(EvaluationCallback, WithTrustRegionMinimizer) {  double parameters[2] = {50.0, 50.0};  const uint64_t original_parameters_hash = Djb2Hash(parameters, 2);  WigglyBowlCostFunctionAndEvaluationCallback cost_function(parameters);  Problem::Options problem_options;  problem_options.evaluation_callback = &cost_function;  problem_options.cost_function_ownership = DO_NOT_TAKE_OWNERSHIP;  Problem problem(problem_options);  problem.AddResidualBlock(&cost_function, NULL, parameters);  Solver::Options options;  options.linear_solver_type = DENSE_QR;  options.max_num_iterations = 50;  // Run the solve. Checking is done inside the cost function / callback.  Solver::Summary summary;  Solve(options, &problem, &summary);  // Ensure that this was a hard cost function (not all steps succeed).  EXPECT_GT(summary.num_successful_steps, 10);  EXPECT_GT(summary.num_unsuccessful_steps, 10);  // Ensure PrepareForEvaluation() is called the appropriate number of times.  EXPECT_EQ(      cost_function.prepare_num_calls,      // Unsuccessful steps are evaluated only once (no jacobians).      summary.num_unsuccessful_steps +          // Successful steps are evaluated twice: with and without jacobians.          2 * summary.num_successful_steps          // Final iteration doesn't re-evaluate the jacobian.          // Note: This may be sensitive to tweaks to the TR algorithm; if          // this becomes too brittle, remove this EXPECT_EQ() entirely.          - 1);  // Ensure the callback calls ran a reasonable number of times.  EXPECT_GT(cost_function.prepare_num_calls, 0);  EXPECT_GT(cost_function.evaluate_num_calls, 0);  EXPECT_EQ(cost_function.prepare_num_calls, cost_function.evaluate_num_calls);  // Ensure that the parameters did actually change.  EXPECT_NE(Djb2Hash(parameters, 2), original_parameters_hash);}// r = 1 - xstruct LinearResidual {  template <typename T>  bool operator()(const T* x, T* residuals) const {    residuals[0] = 1.0 - x[0];    return true;  }  static CostFunction* Create() {    return new AutoDiffCostFunction<LinearResidual, 1, 1>(new LinearResidual);  };};// Increments a counter everytime PrepareForEvaluation is called.class IncrementingEvaluationCallback : public EvaluationCallback { public:  void PrepareForEvaluation(bool evaluate_jacobians,                            bool new_evaluation_point) final {    (void) evaluate_jacobians;    (void) new_evaluation_point;    counter_ += 1.0;  }  const double counter() const { return counter_; } private:  double counter_ = -1;};// r = IncrementingEvaluationCallback::counter - xstruct EvaluationCallbackResidual {  EvaluationCallbackResidual(const IncrementingEvaluationCallback& callback)      : callback_(callback) {}  template <typename T>  bool operator()(const T* x, T* residuals) const {    residuals[0] = callback_.counter() - x[0];    return true;  }  const IncrementingEvaluationCallback& callback_;  static CostFunction* Create(IncrementingEvaluationCallback& callback) {    return new AutoDiffCostFunction<EvaluationCallbackResidual, 1, 1>(        new EvaluationCallbackResidual(callback));  };};// The following test, constructs a problem with residual blocks all// of whose parameters are constant, so they are evaluated once// outside the Minimizer to compute Solver::Summary::fixed_cost.//// The cost function for this residual block depends on the// IncrementingEvaluationCallback::counter_, by checking the value of// the fixed cost, we can check if the IncrementingEvaluationCallback// was called.TEST(EvaluationCallback, EvaluationCallbackIsCalledBeforeFixedCostIsEvaluated) {  double x = 1;  double y = 2;  std::unique_ptr<IncrementingEvaluationCallback> callback(      new IncrementingEvaluationCallback);  Problem::Options problem_options;  problem_options.evaluation_callback = callback.get();  Problem problem(problem_options);  problem.AddResidualBlock(LinearResidual::Create(), nullptr, &x);  problem.AddResidualBlock(      EvaluationCallbackResidual::Create(*callback),      nullptr,      &y);  problem.SetParameterBlockConstant(&y);  Solver::Options options;  options.linear_solver_type = DENSE_QR;  Solver::Summary summary;  Solve(options, &problem, &summary);  EXPECT_EQ(summary.fixed_cost, 2.0);  EXPECT_EQ(summary.final_cost, summary.fixed_cost);  EXPECT_GT(callback->counter(), 0);}static void WithLineSearchMinimizerImpl(    LineSearchType line_search,    LineSearchDirectionType line_search_direction,    LineSearchInterpolationType line_search_interpolation) {  double parameters[2] = {50.0, 50.0};  const uint64_t original_parameters_hash = Djb2Hash(parameters, 2);  WigglyBowlCostFunctionAndEvaluationCallback cost_function(parameters);  Problem::Options problem_options;  problem_options.evaluation_callback = &cost_function;  problem_options.cost_function_ownership = DO_NOT_TAKE_OWNERSHIP;  Problem problem(problem_options);  problem.AddResidualBlock(&cost_function, NULL, parameters);  Solver::Options options;  options.linear_solver_type = DENSE_QR;  options.max_num_iterations = 50;  options.minimizer_type = ceres::LINE_SEARCH;  options.line_search_type = line_search;  options.line_search_direction_type = line_search_direction;  options.line_search_interpolation_type = line_search_interpolation;  // Run the solve. Checking is done inside the cost function / callback.  Solver::Summary summary;  Solve(options, &problem, &summary);  // Ensure the callback calls ran a reasonable number of times.  EXPECT_GT(summary.num_line_search_steps, 10);  EXPECT_GT(cost_function.prepare_num_calls, 30);  EXPECT_EQ(cost_function.prepare_num_calls, cost_function.evaluate_num_calls);  // Ensure that the parameters did actually change.  EXPECT_NE(Djb2Hash(parameters, 2), original_parameters_hash);}// Note: These tests omit combinations of Wolfe line search with bisection.// Due to an implementation quirk in Wolfe line search with bisection, there// are calls to re-evaluate an existing point with new_point = true. That// causes the (overly) strict tests to break, since they check the new_point// preconditions in an if-and-only-if way. Strictly speaking, if new_point =// true, the interface does not *require* that the point has changed; only that// if new_point = false, the same point is reused.//// Since the strict checking is useful to verify that there aren't missed// optimizations, omit tests of the Wolfe with bisection cases.// Wolfe with L-BFGS.TEST(EvaluationCallback, WithLineSearchMinimizerWolfeLbfgsCubic) {  WithLineSearchMinimizerImpl(WOLFE, LBFGS, CUBIC);}TEST(EvaluationCallback, WithLineSearchMinimizerWolfeLbfgsQuadratic) {  WithLineSearchMinimizerImpl(WOLFE, LBFGS, QUADRATIC);}// Wolfe with full BFGS.TEST(EvaluationCallback, WithLineSearchMinimizerWolfeBfgsCubic) {  WithLineSearchMinimizerImpl(WOLFE, BFGS, CUBIC);}TEST(EvaluationCallback, WithLineSearchMinimizerWolfeBfgsQuadratic) {  WithLineSearchMinimizerImpl(WOLFE, BFGS, QUADRATIC);}// Armijo with nonlinear conjugate gradient.TEST(EvaluationCallback, WithLineSearchMinimizerArmijoCubic) {  WithLineSearchMinimizerImpl(ARMIJO, NONLINEAR_CONJUGATE_GRADIENT, CUBIC);}TEST(EvaluationCallback, WithLineSearchMinimizerArmijoBisection) {  WithLineSearchMinimizerImpl(ARMIJO, NONLINEAR_CONJUGATE_GRADIENT, BISECTION);}TEST(EvaluationCallback, WithLineSearchMinimizerArmijoQuadratic) {  WithLineSearchMinimizerImpl(ARMIJO, NONLINEAR_CONJUGATE_GRADIENT, QUADRATIC);}}  // namespace internal}  // namespace ceres
 |