| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2014 Google Inc. All rights reserved.// http://code.google.com/p/ceres-solver///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: sameeragarwal@google.com (Sameer Agarwal)//// A simple example of optimizing a sampled function by using cubic// interpolation.#include "ceres/ceres.h"#include "ceres/cubic_interpolation.h"#include "glog/logging.h"using ceres::CubicInterpolator;using ceres::AutoDiffCostFunction;using ceres::CostFunction;using ceres::Problem;using ceres::Solver;using ceres::Solve;// A simple cost functor that interfaces an interpolated table of// values with automatic differentiation.struct InterpolatedCostFunctor {  explicit InterpolatedCostFunctor(const CubicInterpolator& interpolator)      : interpolator_(interpolator) {  }  template<typename T> bool operator()(const T* x, T* residuals) const {    return interpolator_.Evaluate(*x, residuals);  }  static CostFunction* Create(const CubicInterpolator& interpolator) {    return new AutoDiffCostFunction<InterpolatedCostFunctor, 1, 1>(        new InterpolatedCostFunctor(interpolator));  } private:  const CubicInterpolator& interpolator_;};int main(int argc, char** argv) {  google::InitGoogleLogging(argv[0]);  // Evaluate the function f(x) = (x - 4.5)^2;  const int kNumSamples = 10;  double values[kNumSamples];  for (int i = 0; i < kNumSamples; ++i) {    values[i] = (i - 4.5) * (i - 4.5);  }  CubicInterpolator interpolator(values, kNumSamples);  double x = 1.0;  Problem problem;  CostFunction* cost_function = InterpolatedCostFunctor::Create(interpolator);  problem.AddResidualBlock(cost_function, NULL, &x);  Solver::Options options;  options.minimizer_progress_to_stdout = true;  Solver::Summary summary;  Solve(options, &problem, &summary);  std::cout << summary.BriefReport() << "\n";  std::cout << "Expected x: 4.5. Actual x : " << x << std::endl;  return 0;}
 |