| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256 | 
							- // Ceres Solver - A fast non-linear least squares minimizer
 
- // Copyright 2015 Google Inc. All rights reserved.
 
- // http://ceres-solver.org/
 
- //
 
- // Redistribution and use in source and binary forms, with or without
 
- // modification, are permitted provided that the following conditions are met:
 
- //
 
- // * Redistributions of source code must retain the above copyright notice,
 
- //   this list of conditions and the following disclaimer.
 
- // * Redistributions in binary form must reproduce the above copyright notice,
 
- //   this list of conditions and the following disclaimer in the documentation
 
- //   and/or other materials provided with the distribution.
 
- // * Neither the name of Google Inc. nor the names of its contributors may be
 
- //   used to endorse or promote products derived from this software without
 
- //   specific prior written permission.
 
- //
 
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 
- // POSSIBILITY OF SUCH DAMAGE.
 
- //
 
- // Author: sameeragarwal@google.com (Sameer Agarwal)
 
- //         mierle@gmail.com (Keir Mierle)
 
- #ifndef CERES_PUBLIC_DYNAMIC_AUTODIFF_COST_FUNCTION_H_
 
- #define CERES_PUBLIC_DYNAMIC_AUTODIFF_COST_FUNCTION_H_
 
- #include <cmath>
 
- #include <memory>
 
- #include <numeric>
 
- #include <vector>
 
- #include "ceres/dynamic_cost_function.h"
 
- #include "ceres/internal/fixed_array.h"
 
- #include "ceres/jet.h"
 
- #include "glog/logging.h"
 
- namespace ceres {
 
- // This autodiff implementation differs from the one found in
 
- // autodiff_cost_function.h by supporting autodiff on cost functions
 
- // with variable numbers of parameters with variable sizes. With the
 
- // other implementation, all the sizes (both the number of parameter
 
- // blocks and the size of each block) must be fixed at compile time.
 
- //
 
- // The functor API differs slightly from the API for fixed size
 
- // autodiff; the expected interface for the cost functors is:
 
- //
 
- //   struct MyCostFunctor {
 
- //     template<typename T>
 
- //     bool operator()(T const* const* parameters, T* residuals) const {
 
- //       // Use parameters[i] to access the i'th parameter block.
 
- //     }
 
- //   };
 
- //
 
- // Since the sizing of the parameters is done at runtime, you must
 
- // also specify the sizes after creating the dynamic autodiff cost
 
- // function. For example:
 
- //
 
- //   DynamicAutoDiffCostFunction<MyCostFunctor, 3> cost_function(
 
- //       new MyCostFunctor());
 
- //   cost_function.AddParameterBlock(5);
 
- //   cost_function.AddParameterBlock(10);
 
- //   cost_function.SetNumResiduals(21);
 
- //
 
- // Under the hood, the implementation evaluates the cost function
 
- // multiple times, computing a small set of the derivatives (four by
 
- // default, controlled by the Stride template parameter) with each
 
- // pass. There is a tradeoff with the size of the passes; you may want
 
- // to experiment with the stride.
 
- template <typename CostFunctor, int Stride = 4>
 
- class DynamicAutoDiffCostFunction : public DynamicCostFunction {
 
-  public:
 
-   explicit DynamicAutoDiffCostFunction(CostFunctor* functor)
 
-     : functor_(functor) {}
 
-   virtual ~DynamicAutoDiffCostFunction() {}
 
-   virtual bool Evaluate(double const* const* parameters,
 
-                         double* residuals,
 
-                         double** jacobians) const {
 
-     CHECK_GT(num_residuals(), 0)
 
-         << "You must call DynamicAutoDiffCostFunction::SetNumResiduals() "
 
-         << "before DynamicAutoDiffCostFunction::Evaluate().";
 
-     if (jacobians == NULL) {
 
-       return (*functor_)(parameters, residuals);
 
-     }
 
-     // The difficulty with Jets, as implemented in Ceres, is that they were
 
-     // originally designed for strictly compile-sized use. At this point, there
 
-     // is a large body of code that assumes inside a cost functor it is
 
-     // acceptable to do e.g. T(1.5) and get an appropriately sized jet back.
 
-     //
 
-     // Unfortunately, it is impossible to communicate the expected size of a
 
-     // dynamically sized jet to the static instantiations that existing code
 
-     // depends on.
 
-     //
 
-     // To work around this issue, the solution here is to evaluate the
 
-     // jacobians in a series of passes, each one computing Stride *
 
-     // num_residuals() derivatives. This is done with small, fixed-size jets.
 
-     const int num_parameter_blocks =
 
-         static_cast<int>(parameter_block_sizes().size());
 
-     const int num_parameters = std::accumulate(parameter_block_sizes().begin(),
 
-                                                parameter_block_sizes().end(),
 
-                                                0);
 
-     // Allocate scratch space for the strided evaluation.
 
-     using JetT = Jet<double, Stride>;
 
-     internal::FixedArray<JetT, (256 * 7) / sizeof(JetT)> input_jets(
 
-         num_parameters);
 
-     internal::FixedArray<JetT, (256 * 7) / sizeof(JetT)> output_jets(
 
-         num_residuals());
 
-     // Make the parameter pack that is sent to the functor (reused).
 
-     internal::FixedArray<Jet<double, Stride>*> jet_parameters(
 
-         num_parameter_blocks, nullptr);
 
-     int num_active_parameters = 0;
 
-     // To handle constant parameters between non-constant parameter blocks, the
 
-     // start position --- a raw parameter index --- of each contiguous block of
 
-     // non-constant parameters is recorded in start_derivative_section.
 
-     std::vector<int> start_derivative_section;
 
-     bool in_derivative_section = false;
 
-     int parameter_cursor = 0;
 
-     // Discover the derivative sections and set the parameter values.
 
-     for (int i = 0; i < num_parameter_blocks; ++i) {
 
-       jet_parameters[i] = &input_jets[parameter_cursor];
 
-       const int parameter_block_size = parameter_block_sizes()[i];
 
-       if (jacobians[i] != NULL) {
 
-         if (!in_derivative_section) {
 
-           start_derivative_section.push_back(parameter_cursor);
 
-           in_derivative_section = true;
 
-         }
 
-         num_active_parameters += parameter_block_size;
 
-       } else {
 
-         in_derivative_section = false;
 
-       }
 
-       for (int j = 0; j < parameter_block_size; ++j, parameter_cursor++) {
 
-         input_jets[parameter_cursor].a = parameters[i][j];
 
-       }
 
-     }
 
-     // When `num_active_parameters % Stride != 0` then it can be the case
 
-     // that `active_parameter_count < Stride` while parameter_cursor is less
 
-     // than the total number of parameters and with no remaining non-constant
 
-     // parameter blocks. Pushing parameter_cursor (the total number of
 
-     // parameters) as a final entry to start_derivative_section is required
 
-     // because if a constant parameter block is encountered after the
 
-     // last non-constant block then current_derivative_section is incremented
 
-     // and would otherwise index an invalid position in
 
-     // start_derivative_section. Setting the final element to the total number
 
-     // of parameters means that this can only happen at most once in the loop
 
-     // below.
 
-     start_derivative_section.push_back(parameter_cursor);
 
-     // Evaluate all of the strides. Each stride is a chunk of the derivative to
 
-     // evaluate, typically some size proportional to the size of the SIMD
 
-     // registers of the CPU.
 
-     int num_strides = static_cast<int>(ceil(num_active_parameters /
 
-                                             static_cast<float>(Stride)));
 
-     int current_derivative_section = 0;
 
-     int current_derivative_section_cursor = 0;
 
-     for (int pass = 0; pass < num_strides; ++pass) {
 
-       // Set most of the jet components to zero, except for
 
-       // non-constant #Stride parameters.
 
-       const int initial_derivative_section = current_derivative_section;
 
-       const int initial_derivative_section_cursor =
 
-         current_derivative_section_cursor;
 
-       int active_parameter_count = 0;
 
-       parameter_cursor = 0;
 
-       for (int i = 0; i < num_parameter_blocks; ++i) {
 
-         for (int j = 0; j < parameter_block_sizes()[i];
 
-              ++j, parameter_cursor++) {
 
-           input_jets[parameter_cursor].v.setZero();
 
-           if (active_parameter_count < Stride &&
 
-               parameter_cursor >= (
 
-                 start_derivative_section[current_derivative_section] +
 
-                 current_derivative_section_cursor)) {
 
-             if (jacobians[i] != NULL) {
 
-               input_jets[parameter_cursor].v[active_parameter_count] = 1.0;
 
-               ++active_parameter_count;
 
-               ++current_derivative_section_cursor;
 
-             } else {
 
-               ++current_derivative_section;
 
-               current_derivative_section_cursor = 0;
 
-             }
 
-           }
 
-         }
 
-       }
 
-       if (!(*functor_)(&jet_parameters[0], &output_jets[0])) {
 
-         return false;
 
-       }
 
-       // Copy the pieces of the jacobians into their final place.
 
-       active_parameter_count = 0;
 
-       current_derivative_section = initial_derivative_section;
 
-       current_derivative_section_cursor = initial_derivative_section_cursor;
 
-       for (int i = 0, parameter_cursor = 0; i < num_parameter_blocks; ++i) {
 
-         for (int j = 0; j < parameter_block_sizes()[i];
 
-              ++j, parameter_cursor++) {
 
-           if (active_parameter_count < Stride &&
 
-               parameter_cursor >= (
 
-                 start_derivative_section[current_derivative_section] +
 
-                 current_derivative_section_cursor)) {
 
-             if (jacobians[i] != NULL) {
 
-               for (int k = 0; k < num_residuals(); ++k) {
 
-                 jacobians[i][k * parameter_block_sizes()[i] + j] =
 
-                     output_jets[k].v[active_parameter_count];
 
-               }
 
-               ++active_parameter_count;
 
-               ++current_derivative_section_cursor;
 
-             } else {
 
-               ++current_derivative_section;
 
-               current_derivative_section_cursor = 0;
 
-             }
 
-           }
 
-         }
 
-       }
 
-       // Only copy the residuals over once (even though we compute them on
 
-       // every loop).
 
-       if (pass == num_strides - 1) {
 
-         for (int k = 0; k < num_residuals(); ++k) {
 
-           residuals[k] = output_jets[k].a;
 
-         }
 
-       }
 
-     }
 
-     return true;
 
-   }
 
-  private:
 
-   std::unique_ptr<CostFunctor> functor_;
 
- };
 
- }  // namespace ceres
 
- #endif  // CERES_PUBLIC_DYNAMIC_AUTODIFF_COST_FUNCTION_H_
 
 
  |