| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206 | 
							- // Ceres Solver - A fast non-linear least squares minimizer
 
- // Copyright 2017 Google Inc. All rights reserved.
 
- // http://ceres-solver.org/
 
- //
 
- // Redistribution and use in source and binary forms, with or without
 
- // modification, are permitted provided that the following conditions are met:
 
- //
 
- // * Redistributions of source code must retain the above copyright notice,
 
- //   this list of conditions and the following disclaimer.
 
- // * Redistributions in binary form must reproduce the above copyright notice,
 
- //   this list of conditions and the following disclaimer in the documentation
 
- //   and/or other materials provided with the distribution.
 
- // * Neither the name of Google Inc. nor the names of its contributors may be
 
- //   used to endorse or promote products derived from this software without
 
- //   specific prior written permission.
 
- //
 
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 
- // POSSIBILITY OF SUCH DAMAGE.
 
- //
 
- // Author: mierle@gmail.com (Keir Mierle)
 
- //
 
- // WARNING WARNING WARNING
 
- // WARNING WARNING WARNING  Tiny solver is experimental and will change.
 
- // WARNING WARNING WARNING
 
- #ifndef CERES_PUBLIC_TINY_SOLVER_AUTODIFF_FUNCTION_H_
 
- #define CERES_PUBLIC_TINY_SOLVER_AUTODIFF_FUNCTION_H_
 
- #include <memory>
 
- #include <type_traits>
 
- #include "Eigen/Core"
 
- #include "ceres/jet.h"
 
- #include "ceres/types.h"  // For kImpossibleValue.
 
- namespace ceres {
 
- // An adapter around autodiff-style CostFunctors to enable easier use of
 
- // TinySolver. See the example below showing how to use it:
 
- //
 
- //   // Example for cost functor with static residual size.
 
- //   // Same as an autodiff cost functor, but taking only 1 parameter.
 
- //   struct MyFunctor {
 
- //     template<typename T>
 
- //     bool operator()(const T* const parameters, T* residuals) const {
 
- //       const T& x = parameters[0];
 
- //       const T& y = parameters[1];
 
- //       const T& z = parameters[2];
 
- //       residuals[0] = x + 2.*y + 4.*z;
 
- //       residuals[1] = y * z;
 
- //       return true;
 
- //     }
 
- //   };
 
- //
 
- //   typedef TinySolverAutoDiffFunction<MyFunctor, 2, 3>
 
- //       AutoDiffFunction;
 
- //
 
- //   MyFunctor my_functor;
 
- //   AutoDiffFunction f(my_functor);
 
- //
 
- //   Vec3 x = ...;
 
- //   TinySolver<AutoDiffFunction> solver;
 
- //   solver.Solve(f, &x);
 
- //
 
- //   // Example for cost functor with dynamic residual size.
 
- //   // NumResiduals() supplies dynamic size of residuals.
 
- //   // Same functionality as in tiny_solver.h but with autodiff.
 
- //   struct MyFunctorWithDynamicResiduals {
 
- //     int NumResiduals() const {
 
- //       return 2;
 
- //     }
 
- //
 
- //     template<typename T>
 
- //     bool operator()(const T* const parameters, T* residuals) const {
 
- //       const T& x = parameters[0];
 
- //       const T& y = parameters[1];
 
- //       const T& z = parameters[2];
 
- //       residuals[0] = x + static_cast<T>(2.)*y + static_cast<T>(4.)*z;
 
- //       residuals[1] = y * z;
 
- //       return true;
 
- //     }
 
- //   };
 
- //
 
- //   typedef TinySolverAutoDiffFunction<MyFunctorWithDynamicResiduals,
 
- //                                      Eigen::Dynamic,
 
- //                                      3>
 
- //       AutoDiffFunctionWithDynamicResiduals;
 
- //
 
- //   MyFunctorWithDynamicResiduals my_functor_dyn;
 
- //   AutoDiffFunctionWithDynamicResiduals f(my_functor_dyn);
 
- //
 
- //   Vec3 x = ...;
 
- //   TinySolver<AutoDiffFunctionWithDynamicResiduals> solver;
 
- //   solver.Solve(f, &x);
 
- //
 
- // WARNING: The cost function adapter is not thread safe.
 
- template<typename CostFunctor,
 
-          int kNumResiduals,
 
-          int kNumParameters,
 
-          typename T = double>
 
- class TinySolverAutoDiffFunction {
 
-  public:
 
-   TinySolverAutoDiffFunction(const CostFunctor& cost_functor)
 
-       : cost_functor_(cost_functor) {
 
-     Initialize<kNumResiduals>(cost_functor);
 
-   }
 
-   typedef T Scalar;
 
-   enum {
 
-     NUM_PARAMETERS = kNumParameters,
 
-     NUM_RESIDUALS = kNumResiduals,
 
-   };
 
-   // This is similar to AutoDifferentiate(), but since there is only one
 
-   // parameter block it is easier to inline to avoid overhead.
 
-   bool operator()(const T* parameters,
 
-                   T* residuals,
 
-                   T* jacobian) const {
 
-     if (jacobian == NULL) {
 
-       // No jacobian requested, so just directly call the cost function with
 
-       // doubles, skipping jets and derivatives.
 
-       return cost_functor_(parameters, residuals);
 
-     }
 
-     // Initialize the input jets with passed parameters.
 
-     for (int i = 0; i < kNumParameters; ++i) {
 
-       jet_parameters_[i].a = parameters[i];  // Scalar part.
 
-       jet_parameters_[i].v.setZero();        // Derivative part.
 
-       jet_parameters_[i].v[i] = T(1.0);
 
-     }
 
-     // Initialize the output jets such that we can detect user errors.
 
-     for (int i = 0; i < num_residuals_; ++i) {
 
-       jet_residuals_[i].a = kImpossibleValue;
 
-       jet_residuals_[i].v.setConstant(kImpossibleValue);
 
-     }
 
-     // Execute the cost function, but with jets to find the derivative.
 
-     if (!cost_functor_(jet_parameters_, jet_residuals_.data())) {
 
-       return false;
 
-     }
 
-     // Copy the jacobian out of the derivative part of the residual jets.
 
-     Eigen::Map<Eigen::Matrix<T, kNumResiduals, kNumParameters>> jacobian_matrix(
 
-         jacobian,
 
-         num_residuals_,
 
-         kNumParameters);
 
-     for (int r = 0; r < num_residuals_; ++r) {
 
-       residuals[r] = jet_residuals_[r].a;
 
-       // Note that while this looks like a fast vectorized write, in practice it
 
-       // unfortunately thrashes the cache since the writes to the column-major
 
-       // jacobian are strided (e.g. rows are non-contiguous).
 
-       jacobian_matrix.row(r) = jet_residuals_[r].v;
 
-     }
 
-     return true;
 
-   }
 
-   int NumResiduals() const {
 
-     return num_residuals_;  // Set by Initialize.
 
-   }
 
-  private:
 
-   const CostFunctor& cost_functor_;
 
-   // The number of residuals at runtime.
 
-   // This will be overriden if NUM_RESIDUALS == Eigen::Dynamic.
 
-   int num_residuals_ = kNumResiduals;
 
-   // To evaluate the cost function with jets, temporary storage is needed. These
 
-   // are the buffers that are used during evaluation; parameters for the input,
 
-   // and jet_residuals_ are where the final cost and derivatives end up.
 
-   //
 
-   // Since this buffer is used for evaluation, the adapter is not thread safe.
 
-   using JetType = Jet<T, kNumParameters>;
 
-   mutable JetType jet_parameters_[kNumParameters];
 
-   // Eigen::Matrix serves as static or dynamic container.
 
-   mutable Eigen::Matrix<JetType, kNumResiduals, 1> jet_residuals_;
 
-   // The number of residuals is dynamically sized and the number of
 
-   // parameters is statically sized.
 
-   template<int R>
 
-   typename std::enable_if<(R == Eigen::Dynamic), void>::type Initialize(
 
-       const CostFunctor& function) {
 
-     jet_residuals_.resize(function.NumResiduals());
 
-     num_residuals_ = function.NumResiduals();
 
-   }
 
-   // The number of parameters and residuals are statically sized.
 
-   template<int R>
 
-   typename std::enable_if<(R != Eigen::Dynamic), void>::type Initialize(
 
-       const CostFunctor& /* function */) {
 
-     num_residuals_ = kNumResiduals;
 
-   }
 
- };
 
- }  // namespace ceres
 
- #endif  // CERES_PUBLIC_TINY_SOLVER_AUTODIFF_FUNCTION_H_
 
 
  |