| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2019 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: sameeragarwal@google.com (Sameer Agarwal)//         mierle@gmail.com (Keir Mierle)#ifndef CERES_PUBLIC_DYNAMIC_AUTODIFF_COST_FUNCTION_H_#define CERES_PUBLIC_DYNAMIC_AUTODIFF_COST_FUNCTION_H_#include <cmath>#include <memory>#include <numeric>#include <vector>#include "ceres/dynamic_cost_function.h"#include "ceres/internal/fixed_array.h"#include "ceres/jet.h"#include "ceres/types.h"#include "glog/logging.h"namespace ceres {// This autodiff implementation differs from the one found in// autodiff_cost_function.h by supporting autodiff on cost functions// with variable numbers of parameters with variable sizes. With the// other implementation, all the sizes (both the number of parameter// blocks and the size of each block) must be fixed at compile time.//// The functor API differs slightly from the API for fixed size// autodiff; the expected interface for the cost functors is:////   struct MyCostFunctor {//     template<typename T>//     bool operator()(T const* const* parameters, T* residuals) const {//       // Use parameters[i] to access the i'th parameter block.//     }//   };//// Since the sizing of the parameters is done at runtime, you must// also specify the sizes after creating the dynamic autodiff cost// function. For example:////   DynamicAutoDiffCostFunction<MyCostFunctor, 3> cost_function(//       new MyCostFunctor());//   cost_function.AddParameterBlock(5);//   cost_function.AddParameterBlock(10);//   cost_function.SetNumResiduals(21);//// Under the hood, the implementation evaluates the cost function// multiple times, computing a small set of the derivatives (four by// default, controlled by the Stride template parameter) with each// pass. There is a tradeoff with the size of the passes; you may want// to experiment with the stride.template <typename CostFunctor, int Stride = 4>class DynamicAutoDiffCostFunction : public DynamicCostFunction { public:  // Takes ownership by default.  DynamicAutoDiffCostFunction(CostFunctor* functor,                              Ownership ownership = TAKE_OWNERSHIP)      : functor_(functor), ownership_(ownership) {}  explicit DynamicAutoDiffCostFunction(DynamicAutoDiffCostFunction&& other)      : functor_(std::move(other.functor_)), ownership_(other.ownership_) {}  virtual ~DynamicAutoDiffCostFunction() {    // Manually release pointer if configured to not take ownership    // rather than deleting only if ownership is taken.  This is to    // stay maximally compatible to old user code which may have    // forgotten to implement a virtual destructor, from when the    // AutoDiffCostFunction always took ownership.    if (ownership_ == DO_NOT_TAKE_OWNERSHIP) {      functor_.release();    }  }  bool Evaluate(double const* const* parameters,                double* residuals,                double** jacobians) const override {    CHECK_GT(num_residuals(), 0)        << "You must call DynamicAutoDiffCostFunction::SetNumResiduals() "        << "before DynamicAutoDiffCostFunction::Evaluate().";    if (jacobians == NULL) {      return (*functor_)(parameters, residuals);    }    // The difficulty with Jets, as implemented in Ceres, is that they were    // originally designed for strictly compile-sized use. At this point, there    // is a large body of code that assumes inside a cost functor it is    // acceptable to do e.g. T(1.5) and get an appropriately sized jet back.    //    // Unfortunately, it is impossible to communicate the expected size of a    // dynamically sized jet to the static instantiations that existing code    // depends on.    //    // To work around this issue, the solution here is to evaluate the    // jacobians in a series of passes, each one computing Stride *    // num_residuals() derivatives. This is done with small, fixed-size jets.    const int num_parameter_blocks =        static_cast<int>(parameter_block_sizes().size());    const int num_parameters = std::accumulate(        parameter_block_sizes().begin(), parameter_block_sizes().end(), 0);    // Allocate scratch space for the strided evaluation.    using JetT = Jet<double, Stride>;    internal::FixedArray<JetT, (256 * 7) / sizeof(JetT)> input_jets(        num_parameters);    internal::FixedArray<JetT, (256 * 7) / sizeof(JetT)> output_jets(        num_residuals());    // Make the parameter pack that is sent to the functor (reused).    internal::FixedArray<Jet<double, Stride>*> jet_parameters(        num_parameter_blocks, nullptr);    int num_active_parameters = 0;    // To handle constant parameters between non-constant parameter blocks, the    // start position --- a raw parameter index --- of each contiguous block of    // non-constant parameters is recorded in start_derivative_section.    std::vector<int> start_derivative_section;    bool in_derivative_section = false;    int parameter_cursor = 0;    // Discover the derivative sections and set the parameter values.    for (int i = 0; i < num_parameter_blocks; ++i) {      jet_parameters[i] = &input_jets[parameter_cursor];      const int parameter_block_size = parameter_block_sizes()[i];      if (jacobians[i] != NULL) {        if (!in_derivative_section) {          start_derivative_section.push_back(parameter_cursor);          in_derivative_section = true;        }        num_active_parameters += parameter_block_size;      } else {        in_derivative_section = false;      }      for (int j = 0; j < parameter_block_size; ++j, parameter_cursor++) {        input_jets[parameter_cursor].a = parameters[i][j];      }    }    if (num_active_parameters == 0) {      return (*functor_)(parameters, residuals);    }    // When `num_active_parameters % Stride != 0` then it can be the case    // that `active_parameter_count < Stride` while parameter_cursor is less    // than the total number of parameters and with no remaining non-constant    // parameter blocks. Pushing parameter_cursor (the total number of    // parameters) as a final entry to start_derivative_section is required    // because if a constant parameter block is encountered after the    // last non-constant block then current_derivative_section is incremented    // and would otherwise index an invalid position in    // start_derivative_section. Setting the final element to the total number    // of parameters means that this can only happen at most once in the loop    // below.    start_derivative_section.push_back(parameter_cursor);    // Evaluate all of the strides. Each stride is a chunk of the derivative to    // evaluate, typically some size proportional to the size of the SIMD    // registers of the CPU.    int num_strides = static_cast<int>(        ceil(num_active_parameters / static_cast<float>(Stride)));    int current_derivative_section = 0;    int current_derivative_section_cursor = 0;    for (int pass = 0; pass < num_strides; ++pass) {      // Set most of the jet components to zero, except for      // non-constant #Stride parameters.      const int initial_derivative_section = current_derivative_section;      const int initial_derivative_section_cursor =          current_derivative_section_cursor;      int active_parameter_count = 0;      parameter_cursor = 0;      for (int i = 0; i < num_parameter_blocks; ++i) {        for (int j = 0; j < parameter_block_sizes()[i];             ++j, parameter_cursor++) {          input_jets[parameter_cursor].v.setZero();          if (active_parameter_count < Stride &&              parameter_cursor >=                  (start_derivative_section[current_derivative_section] +                   current_derivative_section_cursor)) {            if (jacobians[i] != NULL) {              input_jets[parameter_cursor].v[active_parameter_count] = 1.0;              ++active_parameter_count;              ++current_derivative_section_cursor;            } else {              ++current_derivative_section;              current_derivative_section_cursor = 0;            }          }        }      }      if (!(*functor_)(&jet_parameters[0], &output_jets[0])) {        return false;      }      // Copy the pieces of the jacobians into their final place.      active_parameter_count = 0;      current_derivative_section = initial_derivative_section;      current_derivative_section_cursor = initial_derivative_section_cursor;      for (int i = 0, parameter_cursor = 0; i < num_parameter_blocks; ++i) {        for (int j = 0; j < parameter_block_sizes()[i];             ++j, parameter_cursor++) {          if (active_parameter_count < Stride &&              parameter_cursor >=                  (start_derivative_section[current_derivative_section] +                   current_derivative_section_cursor)) {            if (jacobians[i] != NULL) {              for (int k = 0; k < num_residuals(); ++k) {                jacobians[i][k * parameter_block_sizes()[i] + j] =                    output_jets[k].v[active_parameter_count];              }              ++active_parameter_count;              ++current_derivative_section_cursor;            } else {              ++current_derivative_section;              current_derivative_section_cursor = 0;            }          }        }      }      // Only copy the residuals over once (even though we compute them on      // every loop).      if (pass == num_strides - 1) {        for (int k = 0; k < num_residuals(); ++k) {          residuals[k] = output_jets[k].a;        }      }    }    return true;  } private:  std::unique_ptr<CostFunctor> functor_;  Ownership ownership_;};}  // namespace ceres#endif  // CERES_PUBLIC_DYNAMIC_AUTODIFF_COST_FUNCTION_H_
 |