| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2015 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: sergey.vfx@gmail.com (Sergey Sharybin)//         mierle@gmail.com (Keir Mierle)//         sameeragarwal@google.com (Sameer Agarwal)#ifndef CERES_PUBLIC_AUTODIFF_LOCAL_PARAMETERIZATION_H_#define CERES_PUBLIC_AUTODIFF_LOCAL_PARAMETERIZATION_H_#include <memory>#include "ceres/local_parameterization.h"#include "ceres/internal/autodiff.h"namespace ceres {// Create local parameterization with Jacobians computed via automatic// differentiation. For more information on local parameterizations,// see include/ceres/local_parameterization.h//// To get an auto differentiated local parameterization, you must define// a class with a templated operator() (a functor) that computes////   x_plus_delta = Plus(x, delta);//// the template parameter T. The autodiff framework substitutes appropriate// "Jet" objects for T in order to compute the derivative when necessary, but// this is hidden, and you should write the function as if T were a scalar type// (e.g. a double-precision floating point number).//// The function must write the computed value in the last argument (the only// non-const one) and return true to indicate success.//// For example, Quaternions have a three dimensional local// parameterization. It's plus operation can be implemented as (taken// from internal/ceres/auto_diff_local_parameterization_test.cc)////   struct QuaternionPlus {//     template<typename T>//     bool operator()(const T* x, const T* delta, T* x_plus_delta) const {//       const T squared_norm_delta =//           delta[0] * delta[0] + delta[1] * delta[1] + delta[2] * delta[2];////       T q_delta[4];//       if (squared_norm_delta > T(0.0)) {//         T norm_delta = sqrt(squared_norm_delta);//         const T sin_delta_by_delta = sin(norm_delta) / norm_delta;//         q_delta[0] = cos(norm_delta);//         q_delta[1] = sin_delta_by_delta * delta[0];//         q_delta[2] = sin_delta_by_delta * delta[1];//         q_delta[3] = sin_delta_by_delta * delta[2];//       } else {//         // We do not just use q_delta = [1,0,0,0] here because that is a//         // constant and when used for automatic differentiation will//         // lead to a zero derivative. Instead we take a first order//         // approximation and evaluate it at zero.//         q_delta[0] = T(1.0);//         q_delta[1] = delta[0];//         q_delta[2] = delta[1];//         q_delta[3] = delta[2];//       }////       QuaternionProduct(q_delta, x, x_plus_delta);//       return true;//     }//   };//// Then given this struct, the auto differentiated local// parameterization can now be constructed as////   LocalParameterization* local_parameterization =//     new AutoDiffLocalParameterization<QuaternionPlus, 4, 3>;//                                                       |  |//                            Global Size ---------------+  |//                            Local Size -------------------+//// WARNING: Since the functor will get instantiated with different types for// T, you must to convert from other numeric types to T before mixing// computations with other variables of type T. In the example above, this is// seen where instead of using k_ directly, k_ is wrapped with T(k_).template <typename Functor, int kGlobalSize, int kLocalSize>class AutoDiffLocalParameterization : public LocalParameterization { public:  AutoDiffLocalParameterization() :      functor_(new Functor()) {}  // Takes ownership of functor.  explicit AutoDiffLocalParameterization(Functor* functor) :      functor_(functor) {}  virtual ~AutoDiffLocalParameterization() {}  virtual bool Plus(const double* x,                    const double* delta,                    double* x_plus_delta) const {    return (*functor_)(x, delta, x_plus_delta);  }  virtual bool ComputeJacobian(const double* x, double* jacobian) const {    double zero_delta[kLocalSize];    for (int i = 0; i < kLocalSize; ++i) {      zero_delta[i] = 0.0;    }    double x_plus_delta[kGlobalSize];    for (int i = 0; i < kGlobalSize; ++i) {      x_plus_delta[i] = 0.0;    }    const double* parameter_ptrs[2] = {x, zero_delta};    double* jacobian_ptrs[2] = { NULL, jacobian };    return internal::AutoDiff<Functor, double, kGlobalSize, kLocalSize>        ::Differentiate(*functor_,                        parameter_ptrs,                        kGlobalSize,                        x_plus_delta,                        jacobian_ptrs);  }  virtual int GlobalSize() const { return kGlobalSize; }  virtual int LocalSize() const { return kLocalSize; } private:  std::unique_ptr<Functor> functor_;};}  // namespace ceres#endif  // CERES_PUBLIC_AUTODIFF_LOCAL_PARAMETERIZATION_H_
 |