| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138 | .. highlight:: c++.. default-domain:: cpp.. _chapter-gradient_tutorial:==================================General Unconstrained Minimization==================================While much of Ceres Solver is devoted to solving non-linear leastsquares problems, internally it contains a solver that can solvegeneral unconstrained optimization problems using just their objectivefunction value and gradients. The ``GradientProblem`` and``GradientProblemSolver`` objects give the user access to this solver.So without much further ado, let us look at how one goes about usingthem.Rosenbrock's Function=====================We consider the minimization of the famous `Rosenbrock's function<http://en.wikipedia.org/wiki/Rosenbrock_function>`_ [#f9]_.We begin by defining an instance of the ``FirstOrderFunction``interface. This is the object that is responsible for computing theobjective function value and the gradient (if required). This is theanalog of the :class:`CostFunction` when defining non-linear leastsquares problems in Ceres... code::  class Rosenbrock : public ceres::FirstOrderFunction {   public:    virtual bool Evaluate(const double* parameters,                          double* cost,                          double* gradient) const {      const double x = parameters[0];      const double y = parameters[1];      cost[0] = (1.0 - x) * (1.0 - x) + 100.0 * (y - x * x) * (y - x * x);      if (gradient != NULL) {        gradient[0] = -2.0 * (1.0 - x) - 200.0 * (y - x * x) * 2.0 * x;        gradient[1] = 200.0 * (y - x * x);      }      return true;    }    virtual int NumParameters() const { return 2; }  };Minimizing it then is a straightforward matter of constructing a:class:`GradientProblem` object and calling :func:`Solve` on it... code::    double parameters[2] = {-1.2, 1.0};    ceres::GradientProblem problem(new Rosenbrock());    ceres::GradientProblemSolver::Options options;    options.minimizer_progress_to_stdout = true;    ceres::GradientProblemSolver::Summary summary;    ceres::Solve(options, problem, parameters, &summary);    std::cout << summary.FullReport() << "\n";Executing this code results, solve the problem using limited memory`BFGS<http://en.wikipedia.org/wiki/Broyden%E2%80%93Fletcher%E2%80%93Goldfarb%E2%80%93Shanno_algorithm>`_algorithm... code-block:: bash     0: f: 2.420000e+01 d: 0.00e+00 g: 2.16e+02 h: 0.00e+00 s: 0.00e+00 e:  0 it: 2.00e-05 tt: 2.00e-05     1: f: 4.280493e+00 d: 1.99e+01 g: 1.52e+01 h: 2.01e-01 s: 8.62e-04 e:  2 it: 7.32e-05 tt: 2.19e-04     2: f: 3.571154e+00 d: 7.09e-01 g: 1.35e+01 h: 3.78e-01 s: 1.34e-01 e:  3 it: 2.50e-05 tt: 2.68e-04     3: f: 3.440869e+00 d: 1.30e-01 g: 1.73e+01 h: 1.36e-01 s: 1.00e+00 e:  1 it: 4.05e-06 tt: 2.92e-04     4: f: 3.213597e+00 d: 2.27e-01 g: 1.55e+01 h: 1.06e-01 s: 4.59e-01 e:  1 it: 2.86e-06 tt: 3.14e-04     5: f: 2.839723e+00 d: 3.74e-01 g: 1.05e+01 h: 1.34e-01 s: 5.24e-01 e:  1 it: 2.86e-06 tt: 3.36e-04     6: f: 2.448490e+00 d: 3.91e-01 g: 1.29e+01 h: 3.04e-01 s: 1.00e+00 e:  1 it: 4.05e-06 tt: 3.58e-04     7: f: 1.943019e+00 d: 5.05e-01 g: 4.00e+00 h: 8.81e-02 s: 7.43e-01 e:  1 it: 4.05e-06 tt: 3.79e-04     8: f: 1.731469e+00 d: 2.12e-01 g: 7.36e+00 h: 1.71e-01 s: 4.60e-01 e:  2 it: 9.06e-06 tt: 4.06e-04     9: f: 1.503267e+00 d: 2.28e-01 g: 6.47e+00 h: 8.66e-02 s: 1.00e+00 e:  1 it: 3.81e-06 tt: 4.33e-04    10: f: 1.228331e+00 d: 2.75e-01 g: 2.00e+00 h: 7.70e-02 s: 7.90e-01 e:  1 it: 3.81e-06 tt: 4.54e-04    11: f: 1.016523e+00 d: 2.12e-01 g: 5.15e+00 h: 1.39e-01 s: 3.76e-01 e:  2 it: 1.00e-05 tt: 4.82e-04    12: f: 9.145773e-01 d: 1.02e-01 g: 6.74e+00 h: 7.98e-02 s: 1.00e+00 e:  1 it: 3.10e-06 tt: 5.03e-04    13: f: 7.508302e-01 d: 1.64e-01 g: 3.88e+00 h: 5.76e-02 s: 4.93e-01 e:  1 it: 2.86e-06 tt: 5.25e-04    14: f: 5.832378e-01 d: 1.68e-01 g: 5.56e+00 h: 1.42e-01 s: 1.00e+00 e:  1 it: 3.81e-06 tt: 5.47e-04    15: f: 3.969581e-01 d: 1.86e-01 g: 1.64e+00 h: 1.17e-01 s: 1.00e+00 e:  1 it: 4.05e-06 tt: 5.68e-04    16: f: 3.171557e-01 d: 7.98e-02 g: 3.84e+00 h: 1.18e-01 s: 3.97e-01 e:  2 it: 9.06e-06 tt: 5.94e-04    17: f: 2.641257e-01 d: 5.30e-02 g: 3.27e+00 h: 6.14e-02 s: 1.00e+00 e:  1 it: 3.10e-06 tt: 6.16e-04    18: f: 1.909730e-01 d: 7.32e-02 g: 5.29e-01 h: 8.55e-02 s: 6.82e-01 e:  1 it: 4.05e-06 tt: 6.42e-04    19: f: 1.472012e-01 d: 4.38e-02 g: 3.11e+00 h: 1.20e-01 s: 3.47e-01 e:  2 it: 1.00e-05 tt: 6.69e-04    20: f: 1.093558e-01 d: 3.78e-02 g: 2.97e+00 h: 8.43e-02 s: 1.00e+00 e:  1 it: 3.81e-06 tt: 6.91e-04    21: f: 6.710346e-02 d: 4.23e-02 g: 1.42e+00 h: 9.64e-02 s: 8.85e-01 e:  1 it: 3.81e-06 tt: 7.12e-04    22: f: 3.993377e-02 d: 2.72e-02 g: 2.30e+00 h: 1.29e-01 s: 4.63e-01 e:  2 it: 9.06e-06 tt: 7.39e-04    23: f: 2.911794e-02 d: 1.08e-02 g: 2.55e+00 h: 6.55e-02 s: 1.00e+00 e:  1 it: 4.05e-06 tt: 7.62e-04    24: f: 1.457683e-02 d: 1.45e-02 g: 2.77e-01 h: 6.37e-02 s: 6.14e-01 e:  1 it: 3.81e-06 tt: 7.84e-04    25: f: 8.577515e-03 d: 6.00e-03 g: 2.86e+00 h: 1.40e-01 s: 1.00e+00 e:  1 it: 4.05e-06 tt: 8.05e-04    26: f: 3.486574e-03 d: 5.09e-03 g: 1.76e-01 h: 1.23e-02 s: 1.00e+00 e:  1 it: 4.05e-06 tt: 8.27e-04    27: f: 1.257570e-03 d: 2.23e-03 g: 1.39e-01 h: 5.08e-02 s: 1.00e+00 e:  1 it: 4.05e-06 tt: 8.48e-04    28: f: 2.783568e-04 d: 9.79e-04 g: 6.20e-01 h: 6.47e-02 s: 1.00e+00 e:  1 it: 4.05e-06 tt: 8.69e-04    29: f: 2.533399e-05 d: 2.53e-04 g: 1.68e-02 h: 1.98e-03 s: 1.00e+00 e:  1 it: 3.81e-06 tt: 8.91e-04    30: f: 7.591572e-07 d: 2.46e-05 g: 5.40e-03 h: 9.27e-03 s: 1.00e+00 e:  1 it: 3.81e-06 tt: 9.12e-04    31: f: 1.902460e-09 d: 7.57e-07 g: 1.62e-03 h: 1.89e-03 s: 1.00e+00 e:  1 it: 2.86e-06 tt: 9.33e-04    32: f: 1.003030e-12 d: 1.90e-09 g: 3.50e-05 h: 3.52e-05 s: 1.00e+00 e:  1 it: 3.10e-06 tt: 9.54e-04    33: f: 4.835994e-17 d: 1.00e-12 g: 1.05e-07 h: 1.13e-06 s: 1.00e+00 e:  1 it: 4.05e-06 tt: 9.81e-04    34: f: 1.885250e-22 d: 4.84e-17 g: 2.69e-10 h: 1.45e-08 s: 1.00e+00 e:  1 it: 4.05e-06 tt: 1.00e-03  Solver Summary (v 1.10.0-lapack-suitesparse-cxsparse-no_openmp)  Parameters                                  2  Line search direction              LBFGS (20)  Line search type                  CUBIC WOLFE  Cost:  Initial                          2.420000e+01  Final                            1.885250e-22  Change                           2.420000e+01  Minimizer iterations                       35  Time (in seconds):    Cost evaluation                       0.000    Gradient evaluation                   0.000  Total                                   0.003  Termination:                      CONVERGENCE (Gradient tolerance reached. Gradient max norm: 9.032775e-13 <= 1.000000e-10).. rubric:: Footnotes.. [#f1] `examples/rosenbrock.cc   <https://ceres-solver.googlesource.com/ceres-solver/+/master/examples/rosenbrock.cc>`_
 |