| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107 | 
							- // Ceres Solver - A fast non-linear least squares minimizer
 
- // Copyright 2015 Google Inc. All rights reserved.
 
- // http://ceres-solver.org/
 
- //
 
- // Redistribution and use in source and binary forms, with or without
 
- // modification, are permitted provided that the following conditions are met:
 
- //
 
- // * Redistributions of source code must retain the above copyright notice,
 
- //   this list of conditions and the following disclaimer.
 
- // * Redistributions in binary form must reproduce the above copyright notice,
 
- //   this list of conditions and the following disclaimer in the documentation
 
- //   and/or other materials provided with the distribution.
 
- // * Neither the name of Google Inc. nor the names of its contributors may be
 
- //   used to endorse or promote products derived from this software without
 
- //   specific prior written permission.
 
- //
 
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 
- // POSSIBILITY OF SUCH DAMAGE.
 
- //
 
- // Author: keir@google.com (Keir Mierle)
 
- //
 
- // A simple example of using the Ceres minimizer.
 
- //
 
- // Minimize 0.5 (10 - x)^2 using analytic jacobian matrix.
 
- #include <vector>
 
- #include "ceres/ceres.h"
 
- #include "glog/logging.h"
 
- using ceres::CostFunction;
 
- using ceres::Problem;
 
- using ceres::SizedCostFunction;
 
- using ceres::Solve;
 
- using ceres::Solver;
 
- // A CostFunction implementing analytically derivatives for the
 
- // function f(x) = 10 - x.
 
- class QuadraticCostFunction
 
-     : public SizedCostFunction<1 /* number of residuals */,
 
-                                1 /* size of first parameter */> {
 
-  public:
 
-   virtual ~QuadraticCostFunction() {}
 
-   virtual bool Evaluate(double const* const* parameters,
 
-                         double* residuals,
 
-                         double** jacobians) const {
 
-     double x = parameters[0][0];
 
-     // f(x) = 10 - x.
 
-     residuals[0] = 10 - x;
 
-     // f'(x) = -1. Since there's only 1 parameter and that parameter
 
-     // has 1 dimension, there is only 1 element to fill in the
 
-     // jacobians.
 
-     //
 
-     // Since the Evaluate function can be called with the jacobians
 
-     // pointer equal to NULL, the Evaluate function must check to see
 
-     // if jacobians need to be computed.
 
-     //
 
-     // For this simple problem it is overkill to check if jacobians[0]
 
-     // is NULL, but in general when writing more complex
 
-     // CostFunctions, it is possible that Ceres may only demand the
 
-     // derivatives w.r.t. a subset of the parameter blocks.
 
-     if (jacobians != NULL && jacobians[0] != NULL) {
 
-       jacobians[0][0] = -1;
 
-     }
 
-     return true;
 
-   }
 
- };
 
- int main(int argc, char** argv) {
 
-   google::InitGoogleLogging(argv[0]);
 
-   // The variable to solve for with its initial value. It will be
 
-   // mutated in place by the solver.
 
-   double x = 0.5;
 
-   const double initial_x = x;
 
-   // Build the problem.
 
-   Problem problem;
 
-   // Set up the only cost function (also known as residual).
 
-   CostFunction* cost_function = new QuadraticCostFunction;
 
-   problem.AddResidualBlock(cost_function, NULL, &x);
 
-   // Run the solver!
 
-   Solver::Options options;
 
-   options.minimizer_progress_to_stdout = true;
 
-   Solver::Summary summary;
 
-   Solve(options, &problem, &summary);
 
-   std::cout << summary.BriefReport() << "\n";
 
-   std::cout << "x : " << initial_x << " -> " << x << "\n";
 
-   return 0;
 
- }
 
 
  |