| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2015 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: sameeragarwal@google.com (Sameer Agarwal)#ifndef CERES_INTERNAL_COMPRESSED_ROW_SPARSE_MATRIX_H_#define CERES_INTERNAL_COMPRESSED_ROW_SPARSE_MATRIX_H_#include <vector>#include "ceres/internal/macros.h"#include "ceres/internal/port.h"#include "ceres/sparse_matrix.h"#include "ceres/types.h"#include "glog/logging.h"namespace ceres {struct CRSMatrix;namespace internal {class TripletSparseMatrix;class CompressedRowSparseMatrix : public SparseMatrix { public:  enum StorageType {    UNSYMMETRIC,    LOWER_TRIANGULAR,    UPPER_TRIANGULAR  };  // Build a matrix with the same content as the TripletSparseMatrix  // m. TripletSparseMatrix objects are easier to construct  // incrementally, so we use them to initialize SparseMatrix  // objects.  //  // We assume that m does not have any repeated entries.  explicit CompressedRowSparseMatrix(const TripletSparseMatrix& m);  // Use this constructor only if you know what you are doing. This  // creates a "blank" matrix with the appropriate amount of memory  // allocated. However, the object itself is in an inconsistent state  // as the rows and cols matrices do not match the values of  // num_rows, num_cols and max_num_nonzeros.  //  // The use case for this constructor is that when the user knows the  // size of the matrix to begin with and wants to update the layout  // manually, instead of going via the indirect route of first  // constructing a TripletSparseMatrix, which leads to more than  // double the peak memory usage.  CompressedRowSparseMatrix(int num_rows,                            int num_cols,                            int max_num_nonzeros);  // Build a square sparse diagonal matrix with num_rows rows and  // columns. The diagonal m(i,i) = diagonal(i);  CompressedRowSparseMatrix(const double* diagonal, int num_rows);  virtual ~CompressedRowSparseMatrix();  // SparseMatrix interface.  virtual void SetZero();  virtual void RightMultiply(const double* x, double* y) const;  virtual void LeftMultiply(const double* x, double* y) const;  virtual void SquaredColumnNorm(double* x) const;  virtual void ScaleColumns(const double* scale);  virtual void ToDenseMatrix(Matrix* dense_matrix) const;  virtual void ToTextFile(FILE* file) const;  virtual int num_rows() const { return num_rows_; }  virtual int num_cols() const { return num_cols_; }  virtual int num_nonzeros() const { return rows_[num_rows_]; }  virtual const double* values() const { return &values_[0]; }  virtual double* mutable_values() { return &values_[0]; }  // Delete the bottom delta_rows.  // num_rows -= delta_rows  void DeleteRows(int delta_rows);  // Append the contents of m to the bottom of this matrix. m must  // have the same number of columns as this matrix.  void AppendRows(const CompressedRowSparseMatrix& m);  void ToCRSMatrix(CRSMatrix* matrix) const;  CompressedRowSparseMatrix* Transpose() const;  // Destructive array resizing method.  void SetMaxNumNonZeros(int num_nonzeros);  // Non-destructive array resizing method.  void set_num_rows(const int num_rows) { num_rows_ = num_rows; }  void set_num_cols(const int num_cols) { num_cols_ = num_cols; }  // Low level access methods that expose the structure of the matrix.  const int* cols() const { return &cols_[0]; }  int* mutable_cols() { return &cols_[0]; }  const int* rows() const { return &rows_[0]; }  int* mutable_rows() { return &rows_[0]; }  const StorageType& storage_type() const { return storage_type_; }  void set_storage_type(const StorageType& storage_type) {    storage_type_ = storage_type;  }  const std::vector<int>& row_blocks() const { return row_blocks_; }  std::vector<int>* mutable_row_blocks() { return &row_blocks_; }  const std::vector<int>& col_blocks() const { return col_blocks_; }  std::vector<int>* mutable_col_blocks() { return &col_blocks_; }  const std::vector<int>& block_offsets() const { return block_offsets_; }  std::vector<int>* mutable_block_offsets() { return &block_offsets_; }  const std::vector<int>& crsb_rows() const { return crsb_rows_; }  std::vector<int>* mutable_crsb_rows() { return &crsb_rows_; }  const std::vector<int>& crsb_cols() const { return crsb_cols_; }  std::vector<int>* mutable_crsb_cols() { return &crsb_cols_; }  static CompressedRowSparseMatrix* CreateBlockDiagonalMatrix(      const double* diagonal,      const std::vector<int>& blocks);  // Compute the sparsity structure of the product m.transpose() * m  // and create a CompressedRowSparseMatrix corresponding to it.  //  // Also compute a "program" vector, which for every term in the  // block outer product provides the information for the entry  // in the values array of the result matrix where it should be accumulated.  //  // This program is used by the ComputeOuterProduct function below to  // compute the outer product.  //  // Since the entries of the program are the same for rows with the  // same sparsity structure, the program only stores the result for  // one row per row block. The ComputeOuterProduct function reuses  // this information for each row in the row block.  //  // storage_type controls the form of the output matrix. It can be  // LOWER_TRIANGULAR or UPPER_TRIANGULAR.  static CompressedRowSparseMatrix* CreateOuterProductMatrixAndProgram(      const CompressedRowSparseMatrix& m,      const StorageType storage_type,      std::vector<int>* program);  // Compute the values array for the expression m.transpose() * m,  // where the matrix used to store the result and a program have been  // created using the CreateOuterProductMatrixAndProgram function  // above.  static void ComputeOuterProduct(const CompressedRowSparseMatrix& m,                                  const std::vector<int>& program,                                  CompressedRowSparseMatrix* result); private:  int num_rows_;  int num_cols_;  std::vector<int> rows_;  std::vector<int> cols_;  std::vector<double> values_;  StorageType storage_type_;  // If the matrix has an underlying block structure, then it can also  // carry with it row and column block sizes. This is auxilliary and  // optional information for use by algorithms operating on the  // matrix. The class itself does not make use of this information in  // any way.  std::vector<int> row_blocks_;  std::vector<int> col_blocks_;  // For outer product matrix (J' * J), we pre-compute its block  // offsets information here for fast outer product computation in  // block unit.  Since the outer product matrix is symmetric, we do  // not need to distinguish row or col block. In another word, this  // is the prefix sum of row_blocks_/col_blocks_.  std::vector<int> block_offsets_;  // If the matrix has an underlying block structure, then it can also  // carry with it compressed row sparse block information.  std::vector<int> crsb_rows_;  std::vector<int> crsb_cols_;  CERES_DISALLOW_COPY_AND_ASSIGN(CompressedRowSparseMatrix);};// Options struct to control the generation of random block sparse// matrices in compressed row sparse format.//// The random matrix generation proceeds as follows.//// First the row and column block structure is determined by// generating random row and column block sizes that lie within the// given bounds.//// Then we walk the block structure of the resulting matrix, and with// probability block_density detemine whether they are structurally// zero or not. If the answer is no, then we generate entries for the// block which are distributed normally.struct RandomMatrixOptions {  int num_row_blocks;  int min_row_block_size;  int max_row_block_size;  int num_col_blocks;  int min_col_block_size;  int max_col_block_size;  // 0 <= block_density <= 1 is the probability of a block being  // present in the matrix. A given random matrix will not have  // precisely this density.  double block_density;};// Create a random CompressedRowSparseMatrix whose entries are// normally distributed and whose structure is determined by// RandomMatrixOptions.//// Caller owns the result.CompressedRowSparseMatrix* CreateRandomCompressedRowSparseMatrix(    const RandomMatrixOptions& options);}  // namespace internal}  // namespace ceres#endif  // CERES_INTERNAL_COMPRESSED_ROW_SPARSE_MATRIX_H_
 |